NAVAL POSTGRADUATE SCHOOL
Monterey, California

EFFECTIVENESS OF NAVAL SURFACE FIRE SUPPORT TO
THE ARMY BRIGADE COMMANDER IN A LITTORAL
CAMPAIGN
by
Juan K. Ulloa
June 2001
Thesis Advisor: Eugene P. Paulo
Second Reader: Arnold H. Buss

Approved for public release; distribution unlimited

Form SF298 Citation Data

Report Date
("DD MON YYYY") Rep?\v AType
15 Jun 2001

Dates Covered (from... to)
("DD MON YYYY")

Title and Subtitle

EFFECTIVENESS OF NAVAL SURFACE FIRE SUPPORT
TO THE ARMY BRIGADE COMMANDER IN A LITTORAL
CAMPAIGN

Contract or Grant Number

Program Element Number

Authors

Project Number

Task Number

Work Unit Number

Performing Or ganization Name(s) and Address(es)
Naval Postgraduate School Monterey, CA 93943-5138

Performing Organization
Number (s)

Sponsoring/M onitoring Agency Name(s) and Address(es)

Monitoring Agency Acronym

Monitoring Agency Report
Number (s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Document Classification
unclassified

Classification of SF298
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
unlimited

Number of Pages
161

EFFECTIVENESS OF NAVAL SURFACE FIRE SUPPORT TO THE ARMY
BRIGADE COMMANDER IN ALITTORAL CAMPAIGN
Juan K. Ulloa—Major, United States Army
B.S., United States Military Academy, 1990
Master of Sciencein Operations Resear ch—June 2001
Advisor: Eugene P. Paulo, Department of Operations Resear ch
Second Reader: Arnold H. Buss, Department of Operations Resear ch

Since the end of the Cold War, the Army has been engaged in an unprecedented number
of joint contingency operations that run the gamut from humanitarian efforts in Cuba and
Haiti to peace-enforcing and peace-keeping in Bosnia to full scale war in Southwest Asia.
These operations, the result of an increasingly complex international security
environment, hint at future missions involving American forces aimed at protecting U.S.
interests worldwide.

To engage and defeat future threats to our national security, the Army must
transform itself into a more strategically responsive, lethal force. The Army is faced with
the challenge of lightening the force while simultaneously increasing its survivability and
lethality. Reach-back technologies from sea, air, and space can provide Army units with
added lethality without encumbering them further.

This thesis analyzes the ability of the Army to effectively utilize Naval Surface
Fire Support (NSFS) to provide indirect fire in support of brigade-sized units. The Fire
Support Simulation Tool (FSST) takes the capabilities and limitations of weapon systens
being studied and ssimulates their employment in the context of a well-defined scenario
for analysis. The output from the simulation provides the input for the analysis of NSFS.

By comparing the utility of several well-constructed courses of action, the FSST
can help decision-makers determine the effectiveness of NSFS within the context of the
scenario being considered. The results of this analysis determined that although a myriad
of issues such as training, mistrust, and synchronization must be addressed to make
reach-back fires successful, there is strong quantitative and analytical evidence to support
the effectiveness of NSFS to an Army Brigade commander engaged in a littoral
campaign.

DoD KEY TECHNOLOGY AREA: Battlespace Environments, Command, Cortrol,
and Communications, Computing and Software, Conventional Weapons, Modeling and
Simulation.

KEYWORDS: NSFS, simulation, Java, FCS, IBCT, Artillery, DD21, DD-21, Paladin,
Crusader.

REPORT DOCUMENTATION PAGE Form Approved OMB No, 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leaveblank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 2001 Master’sThesis

4. TITLE AND SUBTITLE: Effectiveness of Naval Surface Fire Support to the | 5. FUNDING NUMBERS
Army Brigade Commander in a Littoral Campaign

6. AUTHOR(S) Mgjor Juan K. Ulloa

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) | 10. SPONSORING / MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (maximum 200 words)

Since the end of the Cold War, the Army has been engaged in an unprecedented number of joint contingency
operations that run the gamut from humanitarian efforts in Cuba and Hati to peace-enforcing and peace-keeping in Bosnia to
full scale war in Southwest Asia. These operations, the result of an increasingly complex international security environment,
hint at future missions involving American forces aimed at protecting U.S. interests worldwide.

To engage and defeat future threats to our national security, the Army must transform itself into a more strategically
responsive, lethal force. The Army is faced with the challenge of lightening the force while simultaneoudly increasing its
survivability and lethality. Reach-back technologies from sea, air, and space can provide Army units with added lethality
without encumbering them further.

This thesis analyzes the ability of the Army to effectively utilize Naval Surface Fire Support (NSFS) to provide
indirect fire in support of brigade-sized units. The Fire Support Simulation Tool (FSST) takes the capabilities and limitations
of weapon systems being studied and simulates their employment in the context of a well-defined scenario for analysis. The
output from the simulation provides theinput for the analysis of NSFS.

By comparing the utility of several well-constructed courses of action, the FSST can help decision-makers determine
the effectiveness of NSFS within the context of the scenario being considered. The results of this analysis determined that
athough a myriad of issues such as training, mistrust, and synchronization must be addressed to make reach-back fires
successful, there is strong quantitative and analytical evidence to support the effectiveness of NSFS to an Army Brigade
commander engaged in alittoral campaign.

14. SUBJECT TERMS NSFS, Simulation, Java, FCS, IBCT, Artillery, DD21, DD-21, Pdadin, | 15. NUMBER OF
Crusader, Combat Modeling, Field Artillery, Naval Gunfire. PAGES

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Sandard Form 298 (Rev. 2-89)

Prescribed by ANS| Std. 239-18

THISPAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution unlimited

EFFECTIVENESS OF NAVAL SURFACE FIRE SUPPORT TO THE ARMY
BRIGADE COMMANDER INA LITTORAL CAMPAIGN

Juan K. Ulloa
Magjor, United States Army
B.S., United States Military Academy, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
June 2001

Author:

Juan K. Ulloa

Approved by:

Eugene P. Paulo, Thesis Advisor

Arnold H. Buss, Second Reader

James N. Eagle, Chairman
Department of Operations Research

THISPAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Since the end of the Cold War, the Army has been engaged in an unprecedented
number of joint contingency operations that run the gamut from humanitarian efforts in
Cuba and Haiti to peace-enforcing and peace-keeping in Bosnia to full scale war in
Southwest Asia. These operations, the result of an increasingly complex international
security environment, hint at future missions involving American forces aimed at
protecting U.S. interests worldwide.

To engage and defeat future threats to our national security, the Army must
transform itself into a more strategically responsive, lethal force. The Army is faced with
the challenge of lightening the force while simultaneously increasing its survivability and
lethality. Reach-back technologies from sea, air, and space can provide Army units with
added lethality without encumbering them further.

This thesis analyzes the ability of the Army to effectively utilize Naval Surface
Fire Support (NSFS) to provide indirect fire in support of brigade-sized units. The Fire
Support Simulation Tool (FSST) takes the capabilities and limitations of weapon systems
being studied and simulates their employment in the context of a well-defined scenario
for analysis. The output from the simulation provides the input for the analysis of NSFS.

By comparing the utility of several well-constructed courses of action, the FSST
can help decision-makers determine the effectiveness of NSFS within the context of the
scenario being considered. The results of this analysis determined that athough a myriad
of issues such as training, mistrust, and synchronization must be addressed to make

reach-back fires successful, there is strong quantitative and analytical evidence to support

V

the effectiveness of NSFS to an Army Brigade commander engaged in a littoral

campaign.

vi

DISCLAIMER
The views in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government. The reader is
cautioned that computer programs developed in this research may not have been
exercised for all cases of interest. While every effort has been made, within the time
available, to ensure that the programs are free of computational and logic errors, they
cannot be considered validated. Any application of these programs without additional

verification is at the risk of the user.

vii

THISPAGE INTENTIONALLY LEFT BLANK

viii

TABLE OF CONTENTS

I. INTRODUCTION ...ooiiiiiiiiesiisinee ettt sttt st st b s etenaesbessesbensennis 1
A. BACKGROUND ..ottt sttt a et sne s 2
B. THE ARMY OF THE FUTURE — BREAKING THE PARADIGM........... 4

1 Interim Brigade Combat Teamcccccvveeveiie e 5
2. Future Combat System — Objective FOrce.........cccecvvevvevcveseeccveennen, 6
C. ARMY OPERATIONS.......o ottt 6
1. PrinCiples Of Waarooei et 7
2. Tenetsof Army OPeratioNS.......cccvevieeieeiiieesee e see e ses e seesre s 9
3. Fire Support in the AirLand Battle...........coooriiiieiciineieee 11
(@ The Army Fire SUpport TEaMcccocvveverenieeesesesesenes 12
(b) Naval GUNTITE......cciuiceeceee e 13
D. THE ARMY OF THE FUTURE AND NAVAL SURFACE FIRE
10 L 0] 13
E. FIRE SUPPORT WEAPONS CAPABILITIES AND LIMITATIONS
OVERVIEW ..ottt sttt b snesnenns 14
1. Year 2005 (IBCT) i eese st 14
2. Year 2015 (FCS-OF) ..ot 15
F. THESIS STRUCTURE ..ottt s 16

I[I. RESEARCH METHODOLOGY ...cooiiiiciesieeiiceeeeiese ettt sse e e ssessessessesnnsnens 17
A. (@281 O I N 17
B. DETERMINING THE MEASURES OF EFFECTIVENESS................... 17

1. Maximize READIITYccooovviiiiinceees e 19

2. Maximize FIEXiDIITY ... 20

3. Maximize Lethalityccccooeeieiieiece e 22

C. DECISION MATRIX oottt sttt s nne s 23
D. SIMULATION — DEVELOPING A FIRE SUPPORT SIMULATION

TOOL (FSST) ittt sttt sttt sttt bbb b 24

1 WHY SIMUIALION.....cc.eieie e 25

2. Java and SIMKIT OVEIN VIBW......ccceeeeieeineereesieeee e 26

3. QUEUING TREOIY ..ot 27

4, Event Graph Developmentcccvcvivieiecceceecee e 29

5. The SIMUIALTON ... e 31

(@ SIMUIALTON OVENVIBW ...t 31

(b) Target ArriValS......oceeceeie et 33

(© Target SErVICING....cccuviiieiie e 34

(d) Target ENgagement.........ccooveieieieeieneeseeeesee e 36

(e MISSION SUCCESS......eeeueerieeieeneesteeieseesseeaesseesseeeesseesseeeesseenees 36

)] Rgected MiSSIONS.......cooiiiiieiiecec et 37

(9) When a Shooter Runs Out of Ammunition..........ccccceeeeevenee. 38

(h) Collateral Damageceveereerierierese e 38

(i) (@011 /= =10 [l A = 38

E. SCENARIO DEVELOPMENTooiiieieeese e 38

iX

1 SCENANTO L — IBCT ..ot 40

2. SCENANIO 2 —FCS-OF ..o 40

F. COA DEVELOPMENT ..ottt 40
1 Organic Army Fire SUpport Only.ccceceeveeieceereee e 41

(@ 121 S 42

(b) O S 43

2. NSFS ONIY o 43

(@ 1121 ST 44

(b) O T 45

3. Organic Army Fire Support with Reinforcing Army Fires........... 45

(@ 1121 SRR 46

(© O TS 46

4, Organic Army Fire Support with Reinforcing Naval Fires........... 46

(@ 1= 1 TP 47

(b) O TS 48

G. CONFIRMING THE ACCURACY OF THE MODELccceecevvvvvernnee. 48
1 0] 01 | USSP 438

@ Weapons CharaCteristiCS......ooviieiie e 438

(b) Area of Operations and Battlefield...........ccoccevvvrieiencnnennen. 49

(© AttaCk GUIANCE.........ccoeeieceeece e 50

(d) SUCCESS ParametersS.........ccoveeeieeriecee e csie e esre e sae s 50

2 (O 1114 011 | RO PR OURURRTPN 51

(@ COMMON-SENSE. ..ottt 51

(b) SEQUENTIAL ... 52

(© Parameterization...........ccooeeerieie e 52

1. ANALYSISOF SIMULATION OUTPUT ...ttt see e 55
A. OVERVIEW ..ottt ettt st 55
B. DESIGN OF THE EXPERIMENTc.ooiiiieene e 56
1 EXPEIMENT .o 56

2. D2 1= N =)Y S 57

@ VENfICAtiON......ccuiceceeceee e 57

(b) INSIGNT. .. 58

3. Analysisof Variance (ANOVA) ..o 59

4, SenSitiVity tO WEIGNES ..o 62

C. LIMITATIONS OF THE ANALYSIS....oo oo 67
1. INPUL 8N OQULPUL ..o 67

2. DECISION AlG....ciiiiiiiieiieiee et 67

[V. CONCLUSIONSottt sttt teseesbesaesnenneas 69
A. g I TSSO 69
B. ISSUES ...ttt bbbttt n e b 70
C. RECOMMENDATIONS FOR FURTHER RESEARCHccocvvvnenene 71
1 Further Development of the FSST ..., 71

@ Graphical User Interface and Target Distribution Mode71

(b) SUIMVIVADIITY......coieieece e 76

(© Expand the Types of Ammunition the Simulation Models...76
X

(d) Modify Modeling of Time of Flight..........ccccoveieiieieceeee, 77

2. Fire Support Optimization Based on Threat.........cccccceverivnennennen. 77

3. Cost Analysisof Army Fire SUpport Systemsccccceverenenennne 77

D. SUMMARY AND CONCLUSIONS ..o 78
APPENDIX 1: IBCT RAW DATA ..ottt na et st snesnesnens 81
APPENDIX 2: FCSRAW DATA ..ottt sttt ste ettt na e na e aesaesaesnesnennens 87
APPENDIX 3: MAUT FUNCTION ..ot s 93
APPENDI X 4: FSST PROGRAM ..ottt st sae s sae s sne s 95
A. INSTANCE METHODS ..ottt e 95

1.) RSO R 95

2. BattlefieldData.cccveveiirireneseeee e e 96

3. SNOOLEN ...t et 104

4. LI L0 . PP UR TSRS 106

5. TANQELSIALE ..o s 108

6. Tar QetArTiValPIOCESS.......coeeiieeiisiesiee et 109

1. TaANQEISEIVEI 2. 110

B. MAIN METHODS. ... e 117

1 FSSTS50REPIICALIONSJAVA.veeivieciiecee e 117

2. FSSTGEICA JAVA.....cceeieesie sttt sne s 121

C. PROPERTIES FILE EXAMPLES ...t 125

1 IBCT: Army with Reinforcing NSFS........ccccooo e 125

2. FCS: Army withReinforcing NSFS ... 128
BIBLIOGRAPHY ...ttt sttt et e te s ae st e s reeseene e e e e e sentesnennennens 133
INITIAL DISTRIBUTION LIST .ottt st s 135

Xi

THISPAGE INTENTIONALLY LEFT BLANK

Xii

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8
Figure 2.9:

Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:
Figure 2.14:
Figure 2.15:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 4.1:
Figure 4.2
Figure 4.3:
Figure 4.4.
Figure 4.5:
Figure 4.6:

LIST OF FIGURES

OB ECHIVES TTE..... ettt ettt ettt et e s abe e e e e e e e e e e snneas 19
Reliability ODJECHIVES TIEE......oiiii ittt 19
Flexibility ODJECHVES TIE.......cciuiiiiiiie e 21
Lethality ODJECHIVES TTEE......coiiiiiiiie et 23
Y= 0|0 G = o [SRS PPRR 30
Sample Scenario GraphiCc.evveeiiieee e 32
Fire Mission ENQagement PrOCESSuuiiiiiiiereiiiieeesiieee e s siaee e s ssnneeeessnneeeessnsneeeeans 35
IBCT COA LA ittt ettt ettt b et e bt et e et e e ese e e nbe e s nbeesbeeennee e 42
FCS COA 2A ..ttt ettt ettt e et e e s be e e nb e e e ae e snteesaeeanteenneeas 43

IBCT COA 1Bttt ettt sttt st et e s se e et e e saeeambeesneeeneeesneeannas 44

FCS COA 2B ...ttt ettt e bt et e e et e e sbe e e nbeenneeeneee e 45

IBCT COA LC...c i itieiie et eetie ettt sttt st te e s he e e te e s st e e nteesaeeenbeesneeenteesneeeneas 46

FCS COA 2C ... ettt ettt ettt e e te e e bt e et e e s b e e enteesbeeanteenseeannee e 46

IBCT COA ID ...ttt ettt b e ne e e 47

FCS COA 2D ...ttt ettt et ae e eneennee s 48
BOXPIOL Of IBCT COA’S ...ttt ettt ettt ettt ettt be e ne e e 61
BOXPIOt OFf FCS COA S, ittt e e st e e e s st e e e s snnneeeeannnneeas 62
Boxplots of Different WeightingS for IBCTocuiiieiiiiiie e 63
Boxplots of Different WeightingSfor FCS...........ooiiiiiiiee e 64
BOXPIOt OF IBCT ULIHILY ..ottt 66
Unique Dua Triangular DIStriDULION..........ceoiiiiiiiiiieieee e 72
INVENTE PYTamidcooiiii it 73
Picture of Density of Targets on the Battlefield. Dark indicates higher density 74
Unsymmetrica Bivariate Dua Triangular Distributionccccvvveeeeeeeiiiciiveneenen. 75
Sample polar coordinate bivariate distributions (From: Eagle).ccccvveeeeeeeiiinnnee, 76
Condensed OBJECHIVE TTER.......eii et e s srr e e e s nnnneeas 79

Xiii

THISPAGE INTENTIONALLY LEFT BLANK

Xiv

Table 2.1:
Table 2.2
Table 2.3:
Table 2.4;
Table 2.5:
Table 2.6:
Table3.1:
Table3.2:
Table 3.3:
Table 3.4
Table 3.5:
Table 3.6:

LIST OF TABLES

Distribution Of MISSION TYPES....ccouiiiiiiie ittt e e snee e 3
Distribution Of Targel TYPES.......veeeieee ettt A
COA OVEIVIEIW. ...eeeieteee et e e ettt e st e e e et e e e et e e e e sae e e e e sstaeeeeanssaeeeeasreeaeesssneeenans 41
Hardware Parameter OVENVIEWueoiiiieiiiieiiee e siee et siiee s e e e e 41
Area of Operations and Battlefield Parameters............ccoeveeeiieee i 50
Target Engagement and SUCCESS CrteriON............uuviiieeeei i e e 51
EXPEriMENtal DESIGNcoi ittt 57
MEaN MOE PeIfOIMMAaNCE.cciuveieeeiiiiieeeeiiee e e eitee e e et e e e s e e e st e e s snneeeesanneeeeeennees 57
IBCT COA Comparison using T Method...........ccoouiiiiiiiiiie e 60
FCS COA Comparison using T Method.........cccuveiiiiiiiiieiiieeiee e 60
Comparison of IBCT COA 1C and 1D (Collateral Damage = 509%0)..........ccccveeriuveerunenns 65
Comparison of IBCT COA'’s (Fire Mission Time = 40%, Collatera Damage = 40%)..... 66

XV

THISPAGE INTENTIONALLY LEFT BLANK

XVi

LIST OF SYMBOLS, ACRONYMS, AND/OR ABBREVIATIONS

AO
APC
APL
CA
CD
COA
FA

FM

FM
FMT
FSST
GUI
DI

I[e)
JHUAPL
LSV
MAUT
MOE
NAS
NPS
NSFS
PED
PER
PF

PS
TOF
TPS
us

Area of Operations

Armored Personnel Carrier
Applied Physics Lab
Coverage Area

Collateral Damage

Course of Action

Field Artillery

Fire Mission

Field Manual

Fire Mission Time

Fire Support Simulation Tool
Graphical User interface
Infantry Dug In

Infantry in the Open

Johns Hopkins University Applied Physics Lab
Light Skinned Vehicle
MultiAttribute Utility Theory
Measure of Effectiveness
Number of Available Shooters
Naval Postgraduate School
Naval Surface Fire Support
Probable Error in Deflection
Probable Error in Range
Percent Fired

Percent Successful

Time of Flight

Total Percent Successful
United States

XVii

THISPAGE INTENTIONALLY LEFT BLANK

XViii

ACKNOWLEDGMENTS

The author would like to thank the following individuals and organizations for
their help and support:

| would like to thank the Johns Hopkins University Applied Physics Lab for
sponsoring my thesis research. Specifically, | would like to thank Jack Keane and Ted
Smyth who were instrumental in setting up and executing a wonderful thesis tour. |
would aso like to thank Stephen Orloff and Vinnie Broderick who took me under their
broad wings while at JHUAPL.

| want to also thank Lieutenant Colonel Eugene P. Paulo for his time and patience
as my thesis advisor. His guidance, mentorship, and wisdom throughout the devel opment
of this thesis were absolutely critical. His encouragement is the reason this thesis even
exists.

| dso would like to extend a specia thanks to my second reader, Assistant
Professor Arnold H. Buss. His class on simulation and his part in the creation of SIMKIT
gparked the idea behind creating the Fire Support Simulation Tool.

| would like to thank my mother and father for encouraging me to aspire to learn
and to have an open mind. | love you both!

Finally, I thank my wife, Heidi, and my children — Madeline, Juan, and Isabelle.
You are God' s blessing to me and | love you al very much!

Xix

THISPAGE INTENTIONALLY LEFT BLANK

XX

EXECUTIVE SUMMARY

Since the end of the Cold War, the Army has been engaged in an unprecedented
number of joint contingency operations that run the gamut from humanitarian effortsin
Cuba and Haiti to peace-enforcing and peace-keeping in Bosniato full scale war in
Southwest Asia. Over the last ten years, there has been a steady increase in rapid-
deployment, multi-dimensional, joint contingency missions to combat these threats. As
we move into the 21% century these missions will certainly become more and more
complex and more commonplace. To meet the increased requirements to engage and
defeat new threats to our national security, the Army must transform itself into a more
strategically responsive, lethal force that is dominant across a broad spectrum of military
operations such as peace-keeping, combating criminal and terrorist activities, and full
scalewar. The Army must fully develop its capabilities as an integrated, joint force able
to synchronize the lethal and nortlethal fires of all services at the brigade level. Reach
back technologies from sea, air, and space can provide Army units with added lethality
without encumbering them further. This thesis analyzes the effectiveness of Naval
Surface Fire Support (NSFS) for use in supporting land-based Army forces in the littoral.
Rather than smply analyzing the different characteristics and specifications of available
indirect fire weapon systems to determine their effectiveness, amodel was created. This
model, the Fire Support Simulation Tool (FSST), takes the capabilities and limitations of
the weapon systems being studied and simulates their employment in the context of a
well-defined scenario. This thesis analyzes the data produced by the FSST to draw some

broad conclusions about the future of indirect fire support for Army operations.

XXi

The objective of thisthesisis to determine the effectiveness of NSFS to the Army
at brigade level and below in alittoral campaign. The objective was further defined in
terms of seven measures of effectiveness or MOE's — average fire mission time,
percentage of missions fired, percentage of fired missions that were successful,
percentage of total missions that were successful, percentage of the area of operations
that were covered by indirect fires, number of rounds that caused collateral damage, and

the average number of firing platforms available to fire other missions or mass fires.

Several courses of action (COA’s) were created, each modeling a different task
organization of indirect fires to support an Army maneuver brigade. The first COA
includes three Army artillery batteries, the second has three naval surface support ships,
the third has six Army artillery batteries, and the fourth has three Army artillery batteries
and three ships. Each of these COA’s was compared in two separate scenarios. The first
scenario models fires in support of the Army Interim Brigade Combat Team (IBCT)
during the year 2005, and the second models fires in support of the Army Future Combat

Systems (FCS) during the year 2015.

The simulation accounted for the environment and the specific characteristics of
the weapon systems in each COA to create data for each simulation run. By weighting
the importance of each MOE, multi-attribute utility theory was used to combine the data
for a COA into a single measure of its effectiveness. Since each ssimulation run was
governed by alarge number of random events, replicating a specific COA and scenario
gave arange of values for each of the MOE’'s. Thisin turn yielded a range of values for
the effectiveness of each COA. Thefinal distribution of scores of the COA’s was then

compared to determine which one was the best for each scenario.
XXii

The results of the simulation show that by combining the strengths of Army
artillery and naval gunfire, an Army Brigade commander can organize afire support team
that is better able to support his missions than a pure strategy. Although effectivenessis
strongly dependent on the weighting scheme the commander adopts for the MOE’s, this
thesis has demonstrated that there can be an added benefit to using NSFS that should be

explored further.

Although this thesis provides evidence supporting the use of NSFS in a support of
Army operations in the littorals, there are a myriad of issues such as training, mistrust,
and synchronization that must be addressed to make these types of joint campaigns
successful. In the final analysis, it was determine that there is strong quantitative and
analytical evidence to support the effectiveness of NSFS to an Army Brigade commander

engaged in alittoral campaign.

XXiii

THISPAGE INTENTIONALLY LEFT BLANK

XXIV

. INTRODUCTION
Since the end of the Cold War, the Army has been engaged in an unprecedented

number of joint contingency operations that run the gamut from humanitarian efforts in
Cuba and Haiti to peace-enforcing and peace-keeping in Bosnia to full scale war in

Southwest Asia.

With the emergence of an increasingly complex international security
environment, sources of conflict and tension are increasing. Sources of
unrest and conflict range from competition between states to the instability
caused by the collapse of states unable to meet the strains of resource
scarcity, population growth, and ethnic and religious militarism. The
technology enabling real-time transmission of information from any point
on the globe has facilitated the rise of sub-national and transnational
groups, including crimina and terrorist elements that may pursue
objectives that threaten U.S. interests (Shinseki, Statement to 106"
Congress, p. 3).

Over the last ten years, there has been a steady increase in rapid-deployment,
multi-dimensional, joint contingency missions to combat these threats. As we move into
the 21% century these missions will certainly become more and more complex and more
commonplace. To meet the requirement to engage and defeat these threats to our
national security, the Army must transform itself nto a more strategicaly responsive,
lethal force. This force must be dominant across a broad spectrum of military operations
ranging from peace-keeping and humanitarian missions, to missions combating criminal
and terrorist activities, to winning the nations wars on a military budget that continues to
shrink and be scrutinized by public opinion. General Shinseki’s vision for the Army is
one of transformation from a Legacy Force designed to defeat Soviet forces in Europe to
an Objective Force designed to preempt and if necessary defeat threats from all corners of
the globe. This transformation will ultimately result in a force designed to take

advantage of technology to facilitate the ability to rapidly deploy forces and to
1

synchronize and integrate combat power through the design of compatible systems

throughout the Army, Navy, Air Force, and the Marines.

Based on Genera Shinseki’s vision, the Army must be capable of deploying one
Brigade anywhere in the world within 96 hours, have an entire Division on the ground
within 120 hours, and have five Divisions on the ground within 30 days. This mission
leaves the Army with the challenge of lightening the force while simultaneoudy
increasing its survivability and lethality. To do that, the Army must break free from the
paradigm of a self-sufficient and self-contained force. It must fully develop its
capabilities as an integrated, joint force able to synchronize the lethal and non-letha fires

of all services at the brigade level.

This thesis analyzes the effectiveness of Naval Surface Fire Support (NSFS) for
use in supporting land-based Army forces in the littoral. Rather than simply analyzing
the different characteristics and specifications of available indirect fire weapon systems
to determine their effectiveness, a model was created. This model, the Fire Support
Simulation Tool (FSST), takes the capabilities and limitations of the weapon systems
being studied and simulates their employment in the context of a well-defined scenario.
This thesis analyzes the data produced by the FSST to draw some broad conclusions
about the future of indirect fire support for Army operations.

A. BACKGROUND

Mastering the employment of naval gunfire is a documented part of the training of
al Army forward observers and Field Artillery officers. Currently, however, the
mechanism for synchronizing and integrating naval gunfire into Army operations is

vaguely defined and is a process of trial and error that could take hours or days to

2

adequately refine. Although the technology to effectively synchronize naval gunfire with
Army operations in the littorals has existed for quite some time, there has never been a
pressing need for the Army to rely on naval gunfire to support its operations. In the past,
once deployed and fighting on the ground, Army forces have been relatively self-
sufficient, with additional fires being considered a bonus rather than a necessity.
However, in order to quickly deploy a brigade sized force that is both survivable and
lethal in the most austere of environments characterized by a nonlinear battlefield, the
Army must change not only the structure of its force, but also the mindset of its leaders.

We must admit that we need the support of our sister services to accomplish not only our
missions, but also the missions of our country. As we move forward into the 21% century
and the Army transforms from a Legacy to an Objective Force, the need for additional

lethal and non-letha fires that are quick and responsive is paramount. We must design
the capability to allow the near simultaneous engagement of the enemy anywhere he can
be seen and engaged with precision fires from al applicable mediums of land, air, space,
and sea. Those fires must be quickly and easily integrated into a seamless joint operation
that for example might include Army forces on the ground with EW support from space,
close air support from the Air Force, and air defense and NSFS in the littorals from the

Navy.

On 06 March 2000, the Navy took a huge leap in the right direction by tasking the
Johns Hopkins Applied Physics Lab (JHAPL) with identifying and refining potential
opportunities “...for NSFS asset employment in support of Army Future Combat System
Objective Force operations and force employment” (JHU/APL Task Statement, p.1).

Through the coupling of NSFS capabilities and limitations with Army requirements for

the Objective Force, JHAPL is analyzing the contributions the Navy can make to Army
operations now and in the future as it designs, outfits, and fields future systems.

B. THE ARMY OF THE FUTURE - BREAKING THE PARADIGM

As we entered the Cold War in the years following World War 11, the Army
prepared for battle against the monolithic threat from the Soviet Union and her alies.
That force was designed to fight and defeat a large armored enemy on a linear battlefield
in Europe. This basic force structure and design eventually lead to the Army we know

today as the Legacy Force.

The battles of the future will not be linear. They will consist of multi-
dimensioned battlefields against enemies that could include criminals, terrorists, and
dictators in obscure locations. The enemy will practice guerrilla warfare, he will have
weapons of mass destruction, and he will exercise information warfare with impunity.
He will be a student of our history. He will know that we lack commitment to long,
drawn out conflicts, that we are averse to a high casualty rate, and that we are sensitive to
international opinion and hence have a fear of collateral damage. He will know our
strengths and weaknesses and work diligently to exploit them and defeat us. We must

meet and defeat this new enemy threat by changing our tactics.

The fact that battlefields of the future will be multi-dimensional and nonlinear,
emphasizes the necessity to develop a capability to exploit knowledge of the situation to
preempt enemy actions. We must develop the capability to be a full spectrum force that
is agile, flexible, and adaptive. This force must balance precision strike with precision
maneuver, as well as deploy quickly and sustain itself logisticaly for long periods of

time. We have to be able to integrate all combined, joint, and other available assets

4

quickly and easily into a synchronized plan. We must develop the full dimension
operational capability to rapidly and ssmultaneously hit the enemy from all angles and
sustain that pressure until the enemy capitulates. To do this, we must free ourselves from
the paradigm of a cumbersome, hard to deploy, heavily-armored force designed to do

battle on the steppes of Russia and the deserts of the Middle East.

Our new force must exceed the lethality of our old force through overwhelming
firepower gained by synchronizing and using assets from space, air, and sea that are not
part of itsinternal structure. And, our new force must exceed the survivability of our old
force by its ability to move quickly and hide when necessary, by having a short logistics
trail, by exercising tactica and operational mobility far in excess of what the enemy is
capable of. Future and developing technology will make this new force unmatched on
the battlefield, Soldiers on Point for the Nation, Persuasive in Peace, Invincible in war.

1 Interim Brigade Combat Team

The Interim Brigade Combat Team (IBCT) is a force being developed using
today’ s technology to accomplish the objectives outlined in General Shinseki’s vision for
the transformation of the Army. By 2005 the Army will have the capability of putting
one brigade in the air in 96 hours, one Divison on the ground in 120 hours, and five
Divisions on the ground in 30 days. The IBCT will be capable of accomplishing the
intent behind the transformation of the Army to the Objective Force using today’s
technology. By 2005 the Army projects that at least five Divisions will have IBCT
brigades. Not al Divisions in the Army will be outfitted using the IBCT platform,
however; some will be transformed directly from their current configurations to the

Objective Force. The IBCT is basically an interim solution to deployability shortcomings

of the legacy force, and will serve as a test bed for the future technologies that will be
used when the Objective Force is fielded.

2. Future Combat System — Objective Force

The FCS-OF is the force of the future and will be fielded by 2015. The weapon
systems, communications architecture, digital systems, vehicles, etc for that force are
being designed based on technology projected to be available in 2015. By designing all
aspects of the Objective Force including the structure from the ground up, this force will
be fully integrated internally as well as integrated with the other services and our allies to
the maximum extent possible. This integration and cutting-edge technology will make
the Objective Force the most lethal, survivable, and mobile force ever employed.

C. ARMY OPERATIONS

To accurately model the reality of combat, it is imperative that a broad base line
of Army doctrine and the fundamentals of fire support are understood and accounted for.
Knowing doctrine offers insight into what assumptions can be made and how they will
affect the simulation. Since gaining a basic understanding of Army doctrine is so crucial
to understanding what this thesis is attempting to measure and how, included are a few

short, concise paragraphs on the doctrine and tactics behind Army operations.

Doctrine for al Army Operations are outlined in the Army Field Manua
designated FM 100-5. Although that doctrine is updated dightly from time to time,
“[flundamental to operating successfully across the full range of military operationsis an
understanding of the Army's doctrina foundations the principles of war and the tenets of

Army operations’ (FM 100-5, Chapter 2). Below is a brief definition of those timeless

concepts, which will help the reader to understand the doctrine behind how the Army
fights and wins.

1 Principles of War

The nine principles of war provide general guidance for the conduct of
war at the strategic, operational, and tactical levels. They are the enduring
bedrock of Army doctrine. The US Army published its first discussion of
the principles of war in a 1921 Army training regulation. The original
principles adopted by the Army, although dlightly revised, have withstood
the test of time. Today's force-projection Army recognizes the following
nine principles of war (FM 100-5, Chapter 2).

- Objective. Essentially every conflict has an ultimate objective. All
military operations should be focused on attaining that objective. Actions and
intermediate operations that do not contribute to attaining the ultimate objective should

be avoided.

- Offensive. Offensive operations seize that initiative from the enemy.
They make him react to us. They are the most effective and decisive actions that can be

taken to obtain the objective.

- Mass. Mass the effects of averwhelming combat power at the decisive

place and time

Synchronizing all the elements of combat power where they will have
decisive effect on an enemy force in a short period of time is to achieve
mass. To mass is to hit the enemy with a closed fist, not poke at him with
fingers of an open hand. Mass must also be sustained so the effects have
staying power. Thus, mass seeks to smash the enemy, not sting him. This
results from the proper combination of combat power with the proper
application of other principles of war. Massing effects, rather than
concentrating forces, can enable numerically inferior forces to achieve
decisive results, while limiting exposure to enemy fire (FM 100-5, Chapter
2).

- Economy of Force. The principle behind Economy of Forceisto allocate
the minimum amount of combat power to secondary, low threat, and/or low priority
efforts. Effective use of this prinicple allows for the maximum massing of combat power

where it is most needed.

- Maneuver. Place the enemy in a position of disadvantage through the

flexible application of combat power.

Maneuver is the movement of forces in relation to the enemy to gain
positional advantage. Effective maneuver keeps the enemy off balance and
protects the force. It is used to exploit successes, to preserve freedom of
action, and to reduce vulnerability. It continually poses new problems for
the enemy by rendering his actions ineffective, eventualy leading to
defeat. At al levels of war, successful application of maneuver requires
agility of thought, plans, operations, and organizations. It requires
designating and then shifting points of main effort and the considered
application of the principles of mass and economy of force. At the
operational level, maneuver is the means by which the commander
determines where and when to fight by setting the terms of battle,
declining battle, or acting to take advantage of tactical actions. Maneuver
is dynamic warfare that rejects predictable patterns of operations (FM 100-
5, Chapter 2).

- Unity of Command. For every effort or operation there should be one
commander whose goal it is to synchronize al assets into an operation aimed at attaining

the objective. Unity of command helps us mass our combat power at the decisive place

and time.

- Security. Security of the force gives the commander flexibility by

reducing the enemy’ s opportunity to surprise us and reducing our vulnerability.

- Surprise. Strike the enemy at a time or place or in a manner for which he

iSunprepared.

Surprise can decisively shift the balance d combat power. By seeking
surprise, forces can achieve success well out of proportion to the effort
expended. Rapid advances in survelllance technology and mass
communication make it increasingly difficult to mask or cloak large-scale
marshaling or movement of personnel and equipment. The enemy need
not be taken completely by surprise but only become aware too late to
react effectively. Factors contributing to surprise include speed, effective
intelligence, deception, application of unexpected combat power,
operations security (OPSEC), and variations in tactics and methods of
operation. Surprise can be in tempo, size of force, direction or location of
main effort, and timing. Deception can aid the probability of achieving
surprise (FM 100-5, Chapter 2).

- Simplicity. Prepare plans and orders in a manner that is clear and concise.
Tired leaders and soldiers have a difficult time issuing and following complex, unclear
plans. A mediocre but smple plan executed vigorously and flawlessly is superior to a

perfect, complex plan whose execution is laden with mistakes and misunderstandings.

2. Tenets of Army Operations

Whenever Army forces are called upon to fight, they fight to win. Army
forces in combat seek to impose their will on the enemy; in operations
other than war, they seek to ater conditions to achieve their purpose.
Victory is the objective, no matter the mission. Nothing short of victory is
acceptable. The Army's doctrine describes its approach to generating and
applying forces and force at the strategic, operational, and tactical levels.
The Army's success on and off the battlefield depends on its ability to
operate in accordance with five basic tenets: initiative, agility, depth,
synchronization, and versatility. A tenet is a basic truth held by an
organization. The fundamental tenets of Army operations doctrine
describe the characteristics of successful operations. All training and
leadership doctrine and all combat, combat support, and combat service
support doctrine derive directly from, and must support, the fundamental
tenets. The US Army believes that its five basic tenets are essentia to
victory. In and of themselves they do not guarantee victory, but their
absence makes it difficult and costly to achieve (FM 100-5, Chapter 2).

- Initiative. Initiative is gained by action. It implies an offensive mindset
and is gained by creating options for your own forces while constraining the options of

your foe. Initiative on the battlefield requires leaders to anticipate events at al levels so

their forces can act and react quicker than the enemy. In the attack it means gaining the
initiative through surprise and maintaining the initiative through a fast, aggressive tempo
that keeps the enemy in a constant state of disorientation. In the defense it means quickly
turning the tables and shifting to the offensive. Initiative requires decentralization of
decision- making authority to the lowest practical level, while maintaining a synchronized
effort. Initiative is our ability to control where we fight, when we fight, and under what

conditions we fight.

- Agility. Agility is our ability to react quicker than the enemy. It gives us
the ability to quickly concentrate our forces on enemy weaknesses. Agility is needed to

acquire and retain the initiative.

- Depth. Depth is the extension of the dimensionality of operations.
Considering the depth of the battlefield involves consideration of space, time, resources,
information, and the objective. Attacking in depth involves disrupting and defeating the
enemy in these areas simultaneously. Employing our forces in depth involves using all
available assets maximally. “Depth allows commanders to sustain momentum and take
advantage of all available resources to press the fight, attacking enemy forces and
capabilities simultaneously throughout the battlefield. Momentum in the attack and

elasticity in defense derive from depth” (FM 100-5, Chapter 2).

- Synchronization. Synchronization is arranging activities in time and
Space to mass combat power at the decisive point and time. Synchronization of the fight
gives us the ability to attack the enemy at multiple points with multiple assets in depth,

sequentially, and simultaneously.

10

- Versatility. A versatile Army can adapt to meet diverse mission

requirements.

It suggests that all military organizations must have the ability to organize
in different combinations of units and the capacity to redeploy from one
area or region to another without the loss of focus. Versatility is the result
of wdl-led, well-trained, and well-equipped forces; high standards, and
detailed planning. Versatility ensures that units can conduct many
different kinds of operations, either sequentially or simultaneously, with
the same degree of success (FM 100-5, Chapter 2).

3. Fire Support in the AirLand Battle

AirLand Battle encompasses the three aspects of an operation: the deep operation,
close operation, and rear operation. Deep operations attack the enemy in the battlespace
beyond the close fight. Deep operations shape the close fight. Forces that are in
immediate contact with the enemy are involved in close operations. Generaly close
operations are considered to be the current fight at the Corps and lower levels. Rear
operations are generally protection and sustainment operations in the rear areas of our
force. They can be targets of enemy deep operations. All three of these aspects of the
AirLand battle must be executed simultaneously by the maneuver commander in order to

defeat the enemy.

Fire support assets in the AirLand battle include all indirect-fire weapons, armed
aircraft, and other lethal and non-lethal means. It includes mortars, field artillery, naval
gunfire, and air delivered weapons, which include all conventional, chemical, and tactical
nuclear munitions. Nonletha means include EW, illumination, and smoke. The purpose
behind fire support is to support the scheme of maneuver, mass fires, and delay, disrupt,

or destroy enemy forces in depth. Fire support destroys, neutralizes, and suppresses the

11

enemy through synchronizing al fire support assets with the scheme of maneuver to

accomplish the mission.

The field artillery is the principal means of fire support available to the maneuver
commander, and is doctrinally responsible for the integration of all fire support assets in
support of the maneuver commander’s plan. As the senior coordinator of all fire support
assets, the fire support coordinator (FSCOORD) from the field artillery is responsible for
the integration of all fire support means to support the maneuver commander in the close,
deep, and rear fight.

@ The Army Fire Support Team

@ Forward Observers. Forward observers are considered
the eyes of the artillery. They identify the target and determine the location of the target
in a manner that can be pinpointed on a military map. Based on the information they
have about the target (posture, speed, dispersion, etc.) and the environment the target isin
(snow, swamp, open fields, etc.) the forward observer formulates a fire mission using the
following three separate transmissions:

Observer identification and warning order. In this transmission the observer
identifies himself and lets the fire direction center (FDC) know what type of fire mission
he is going to request (example: fire for effect).

Target location. In this transmission the observer tells the FDC the location of
the target.

Description of target, method of engagement, and method of fire and control.

Finally, the observer describes the target (example: enemy platoon in the open),

12

designates a method of engagement (example: high angle, high explosive), and a method
of fire and control (example, at my command).

2 Fire Direction. The FDC is the brains of the artillery.
The FDC takes this request for fire and formulates an actua fire mission based on the
tactical situation, the location of the howitzers, and available munitions. He develops
technica firing data (what direction and elevation to fire, which munitions, and what
amount and type of propellant) for the howitzers. This technical firing data is passed to
the howitzers.

3 Howitzers. The howitzers are the brawn of the artillery.
They take the fire mission data from the FDC, load that data into the howitzer, and fire
the mission.

(b) Naval Gunfire

Calling in Naval gunfireis similar to calling in field artillery. The forward
observer is still the eyes, but the fire direction and the gun systems are linked together as
one and execute the mission as a unit. There are several challenges to calling in Naval
gunfire. The format of the fire missons are different, the communications nets are
different (HF versus FM), and the ballistic trgjectories, types of munitions, etc can be
very different. These differences create difficulties in caling for and adjusting naval
gunfire, but for the purposes of this thesis most of these difficulties will be modeled using
one or two simple parameters to be discussed later.

D. THE ARMY OF THE FUTURE AND NAVAL SURFACE FIRE SUPPORT

The Army has always been a self-sufficient force capable of sustained ground
operations. Other than logistics requirements, the Army has also been capable of

executing its missions independent of the other services once deployed. This capability is
13

adesirable one, and was a necessity when the United States alongside NATO was poised
for combat against the Soviet Union and the Warsaw Pact. In order to create a force that
has the rapid deployment capability of the Objective Force, the Army must reduce its
logistic footprint and maximize its ability to integrate and utilize fires from other sources.
Reducing the logistic footprint is accomplished by the development of equipment that
shares many common parts; the development of lighter, more lethal, multi-purpose

munitions; and by reducing the size of the force without reducing its lethality.

Reducing the size of the force without diminishing its lethality is accomplished by
cultivating and developing the ability for reachrback fires and effects. These fires and
effects can include EW and ADA support from ships in the area, electronic support and
laser munitions from space, deep and close strike support from the Air Force, Navy, and
Marines, and fire support from adjacent Marine, Army, Naval assets, just to name a few.
This thesis focuses on the effectiveness of reach-back fires from NSFS assets in range of
Army operations in the littoral.

E. FIRE SUPPORT WEAPONS CAPABILITIES AND LIMITATIONS
OVERVIEW

For simplicity the only assets analyzed and compared are field artillery and Naval
guns in Battery mass missions. The effect of mortar fire is not included in the analysis.
The data below include only what is needed to conduct the thesis.

1. Year 2005 (IBCT)

By year 2005 the Army expects to have five Divisons outfitted with IBCT
brigades. Thisforce will be designed with current off-the-shelf technology and will meet
the CSA’s intent of one brigade deployed in 96 hours, one Division on the ground in 120

hours, and five Divisions on the ground in 30 days.

14

The primary indirect fire weapon system used by the IBCT will be the Paladin
howitzer. The Paladin is capable of firing up to eight rounds in one minute and can
engage targets up to 30,000 meters away using a high explosive round. The howitzer and
its ammunition support vehicle can carry 138 complete rounds, and there will be six
Paladin howitzers and ammunition support vehicles in an artillery battery (Paladin,

WebSite for Defence Industries).

The primary ship that will provide naval gunfire in support of Marine and Army
units will be the DDG-51, a destroyer. The DDG-51 is currently being upgraded, and
should be capable of engaging targets up to 63 nautical miles away or about 112,300
meters (Lisiewski and Whitmann).

2. Year 2015 (FCS-OF)

By the year 2015 the Army will have fielded the FCS-OF. The capabilities and
limitations of the weapons systems available for the Objective Force are projections
based on Army and Navy requirements statements for the Crusader howitzer and the DD-

21.

The primary indirect fire weapon system organic to the Objective Force will be a
futuristic howitzer designated as the Crusader throughout this analysis. The Crusader
should be capable of firing ten rounds in one minute and engaging targets at ranges
greater than 40,000 meters. The howitzer and its ammunition support vehicle should be

able to carry around 160 complete rounds (Crusader, WebSite for Defence Industries).

The primary ship that will provide naval gunfire in support of Marine and Army
units will be the DD-21. The DD-21 will be capable of engaging targets up to 100

nautical miles away (about 178,200 meters). The DD-21 is projected to have two guns
15

per ship with a maximum firing rate of 24 rounds per minute and a magazine capacity of
over 1200 rounds (Lisiewski and Whitmann).

F. THESISSTRUCTURE

Chapter 11 will describe the methodology used in identifying the measures of
effectiveness, creating and implementing the courses of action (COA) and scenarios for
the simulation, and developing the logic, assumptions, and interactions that drive the
simulation. Chapter I11 will provide a detailed analysis of the output from each scenario
and COA. Chapter IV will summarize the results of the simulation, outline conclusions
and insights gained from the simulation, and provide recommendations for further

research of this subject.

16

II. RESEARCH METHODOLOGY

A. OBJECTIVE

The objective of thisthesisisto determine the effectiveness of NSFS to the Army
a brigade level and below in alittoral campaign. In order to determine the effectiveness
of NSFS, the objective is defined in terms of measures of effectiveness or MOE’s. The
process of determining the MOE's begins by defining the problem statement in severa
more concise sub-objectives, called top-level objectives. When the top-level objectives
are met, the system being measured or analyzed is effective. The process continues by
successively redefining each of the higher-level objectives with lower-level objectives
that are needed to satisfy them. These objectives continue to be redefined until they are
guantitative in nature. These quantitative objectives are the bottom-level objectives or

MOE'’s (Armstrong, p. 4-3).

These objectives are assembled in a tree-like structure beginning with the
problems statement at the top and ending with the MOE’s at the bottom. The find
product shows the methodology used to determine the MOE’'s. This is a clear and
concise picture of the problem statement and the data needed to analyze the problem
effectively.

B. DETERMINING THE MEASURES OF EFFECTIVENESS

Effectiveness of any fire support asset can be analyzed by considering its ability
to satisfy the following four objectives. Reiability, Lethality, Flexibility, and
Survivability. Those four objectives are lower-level objectives to the overall objective of

measuring the effectiveness of NSFS.

17

While al four objectives are important, for the purposes of this study differences
in survivability between systems can be assumed to be negligible and are therefore not
included. Survivability of an asset is how robust that system is on the battlefield. It
involves issues such as maintainability, ability to withstand harsh conditions, protection
of the crew, and ability to hide from, evade, or withstand enemy indirect and direct fire
systems. To measure the survivability of a particular indirect fire system may require a
very detailed simulation that could measure and replicate the enemy’s ability to attrit or
reduce the effectiveness of the system, account for the effects of weather and other
conditions that affect maintenance, and a host of other contributors and detractors from
survivability. The bcus of this thesis is on the effectiveness of indirect fire systems,
specificaly the capability of NSFS to engage enemy targets to standard for the Army.
Although survivability cannot be discounted, we make the assumption that the
survivability of the assets being compared is reasonably similar and can be mitigated to
the point where they are negligible in this study. In short, survivability, although

important is not the crux of this analysis, and should be considered separately.

Dissecting the remaining top-level objectives in turn gives a quantitative way of
analyzing the effectiveness of NSFS. The top-level objectives for determining the

effectiveness of NSFS are shown in Figure 2.1 below.

18

To maximize the effectiveness of lethal indirect fires
available to Army Objective Force commanders
at Brigade level and below in locations within
reach of Navy ship fires.

| |
Maximize | | Maximize | | Maximize
Reliability | | Flexibility | | Lethality
Figure 2.1: Objectives Tree

1. Maximize Reliability

Reliability is an important part of integrating an asset into an operation. For an
Army brigade commander to effectively integrate and synchronize the indirect fires into
an operation, he must know that the asset will deliver its munitions on target at the
prescribed place and time. The Reliability objectives tree below outlines the procedure

and thought process behind determining the measurable, bottom-level tasks that

determine the reliability of indirect fires.

Maximize
Reliability
|
| |
Maximize Maximize
ability to Timeliness/
Respond to Fire Missions Mission Response Time
|
| |
Maximize Percentage Maximize Percentage Minimize Average
of Missions Fired of Successful Missions Mission Time
(%) (%) (time)

Figure 2.2: Reliability Objectives Tree
To a brigade commander reliability of indirect fires generally consists of two

screening criterion: (1) capability of an asset to respond to and engage various threats and

19

(2) timeliness in its response to the request for indirect fires. Quantifying each of these
objectives results in the lowest level objectives needed to measure reliability. These
lowest level measurable objectives are the percentage of missions that the asset was
capable of engaging, the percentage of those missions that were successful, and the time

that each asset took to engage each threat.

The percentage of missions that each COA could engage encompassed the
brigade commander’s first criteria for reliable indirect fires. This bottom-level objective
tells the brigade commander whether the assets at his disposal can cover a sector of his

tactical plan with the ammunition available.

The percentage of successful missions pertains to the second of the brigade
commander’s criterion. Measuring the percentage of successfully engaged targets of
those that could be engaged tells the brigade commander how responsive the indirect
fires are to his requests. It measures their ability to reliably engage the targets he wants

engaged and inflict the requisite damage on those targets.

The average time to engage targets is a measure of the timeliness of the indirect
firesin a particular COA. This pertains to the brigade commander’s third criterion. The
objective tree for reliability is shown in Figure 2.2.

2. Maximize Flexibility

Flexibility is the ability of an asset to perform and successfully accomplish
diverse missions. Flexibility includes more than the ability to range targets. It includes
having the right munitions to engage hardened targets and having the precision to engage
targets that are positioned in awkward or protected locations. The three sub-objectives

listed below were identified as crucial to measuring flexibility.

20

High precision allows an asset to be used to engage targets that are in close
proximity to friendly troops or noncombatants. By measuring the number of errant
rounds that induce collateral damage in each scenario, the simulation can measure the
precision of indirect fires in that scenario. By carefully modeling this parameter,
collateral damage for different environments can be measured. For example, in a rura
setting, on average, collateral damage might only be induced by 0.1 percent of the rounds
that are errant by 200 or more meters, while in an urban setting, collateral damage might
occur with a 50% chance if a sngle round misses its mark by more than 50 meters.

These specific parameters are included in the scenario.

Maximizing coverage alows one asset to provide indirect fires in the maximal
number of situations. By measuring the percentage of the area of operations covered by

indirect fires, we can compare the differences in different courses of action.

Ultimately, maximizing flexibility consists of the following two bottom level,
measureabl e objectives: number of rounds that cause collateral damage and percentage of
the area of operations that is covered by indirect fires. The objectives tree for

maximizing flexibility is shown below in Figure 2.3.

Maximize
Flexibility

Minimize Maximize
Errant Rounds Coverage

Minimize theNumber Maximize the Percentage of
of Rounds that Cause the Area of Operation
Collateral Damage with indirect fire coverage
(#) (%)

Figure 2.3: Flexibility Objectives Tree
21

3. Maximize L ethality

Lethality is the cornerstone of Army operatiors. Without lethality, or the
perception of lethality, we are ineffective. Precision and massing of indirect fires attains

lethality.

By maximizing the availability of artillery at any given moment, we can measure
the extent to which we can mass fires. It is worthwhile to note that although this
objective is listed under lethaity, it is realy a multidimensiona objective that gives the
commander a measure of flexibility and reliability as well. The average availability of
firing platforms indicates fow likely it is that at any given moment he can effectively
engage a target (reliability), and can serve as an indicator to the commander that he has
the flexibility to shift assets and move assets on the battlefield to enhance his ability to
engage the eremy. Ultimately, maximizing the availability of firing platforms provides
the commander with the lethaity he needs to mass indirect fires, the flexibility he needs
to move assets on the battlefield, and the reiability he wants to immediately engage

targets as they become available.

A single fire mission supports the overall mission of the organization by doing its
part in the concept of the operation. By maximizing the total percentage of missions
engaged successfully, the success of the mission is maximized. This differs from the
reliability measurement, since it only measures the percentage of missions that result in
success of the ones engaged (# success/# engaged * 100%), while reliability measures the
percentage of targets successfully engage with respect to the total number that arrive (#
success/total * 100%). The objectives tree for maximizing lethality is shown below in

Figure 2.4.

22

Maximize

Lethality
1
1 1
Maximize Maximize
Ability to Mass Indirect Fires Mission Success
Maximize Availability Maximize the
of Indirect Fires Assets Percentage of Missions
Engaged Successfully
(CO))

Maximize number
of available firing platforms
(average number of
available firing platforms)

Figure 2.4: Lethality Objectives Tree

C. DECISION MATRIX

The top-level objectives of each objectives tree are those objectives that are most
important for measuring the effectiveness of indirect fires to the brigade commander,
while the bottom-level objectives provide a quantifiable and measurable method of
comparing the performance of the top-level objective under different scenarios. These
bottom-level objectives are measures of effectiveness (MOE's) for the top-leve

objectives. They are the quantitative data that help the decision-maker pick a COA.

To measure the effectiveness of each COA, multi-attribute utility theory or
MAUT, was used. This method provides a simple, relatively intuitive way to weight and
quantify the value of very different decisionmaking criterion. To use MAUT, two basic

assumptions must be met:

1. It must be possible for the decison maker to consider and
judge the relative weight of any combination of factors. That is, it
must be possible to consider not only the weight of factor 1 (F),
but also the weight of both F; and F».

2. Weights are assumed to be additive. That is, given the weight
of F; and the weight of F,, the weight of both F, and - is the sum
of their individual weights (Canada and Sullivan, p223).

23

If both of these assumptions hold, the decision maker can measure and compare
the effectiveness of each COA in a given scenario using MAUT. Firdt, the decision
maker or his representative weights each of the MOE’s based on its relative importance.
Each raw score for each MOE in a particular COA is then compared with the
corresponding raw scores from each other COA. The “best” raw score is assigned a
utility of 1, while the “worst” raw score is assigned a utility of 0. Utility of the remaining
MOE'’s is assumed to be linear, and is computed using the following formula, where i =

MOE number, j = COA number:
Utility Score MOE; = (X j-worst; ;)/(best j-worsti), " i)

To get the utility score for MOE; 1 (1% MOE for the 1% COA), the raw score of the
worst 1 is first subtracted from x; 1. This quantity is then divided by the raw score of the

worst; 1 subtracted from the best; ;.

The total utility of each COA is computed using the following formula:
a MOE, , *WEIGHT, , ---" |
i=1
The best COA isthe COA with highest total utility score (Canada and Sullivan, p.
228).

D. SIMULATION — DEVELOPING A FIRE SUPPORT SIMULATION TOOL
(FSST)

The Fire Support Simulation Tool (FSST) is a discrete-event simulation written in
the programming language JAVA. The simulation uses Simkit, a discrete-event
simulation package created by Assistant Professor Arnold H. Buss and LT Kurt Stork

written in JAVA (Stork, 1996).

24

The objective of the FSST is to obtain the ravw MOE data for each COA as
determined by the value systems design described earlier. Although high-fidelity
simulations exist that can provide the raw MOE data, they are cumbersome, complex
simulations that take days, weeks, and even months to prepare and execute. Even then,

these simulations do not package the output in away that can be easily interpreted.

The objective of the FSST is to provide the user with a portable simulation that
can be prepared and executed in minutes, is simple to use, and provides results in an
easy-to-read and understand format using intuitive analysis techniques that anyone can
understand. The intent of the simulation is to provide quick, broad insight into the
advantages and disadvantages of different task organizations of indirect fire assets (each
task organization represents a different COA), and to provide a quantitative measure of
the effectiveness of that task organization. By investigating a well-selected sample of
COA'’s the effectiveness of NSFS can be determined.

1. Why Simulation

Because of the complex, stochastic nature of this problem, there is no closed-form
solution to measuring the effectiveness of NSFS. Because of this, simulation is good tool
to investigate the effectiveness of NSFS using the MOE’s outlined above (Law and
Kelton, p. 6). By accounting for the stochastic nature of target arrival times and fire
mission times, a simulation can draw a complete picture of the strengths and weaknesses
of each COA in terms of the MOE's and their variances when applicable. This is
powerful information for a decisonmaker and offers valuable insight into the
performance of the assets being evaluated. For example, a commander who is very

concerned with success of critical fire missions might choose an asset that is more stable

25

(has lower variance in success rate) over one that is more chaotic with a higher average
success rate. This simulation should reveal those chaotic behaviors allowing the
commander to make a more informed decision. Since this smulation is easy to set-up
and execute, it should also allow any staff to quickly create and run multiple courses of
action (COA’s) for each scenario. The staff can then present the results and their analysis
and their best scenarios to the decision maker, expanding his flexibility and offering even
more insight into the behavior of his assets in his environment.

2. Java and SIMKIT Overview

Java is an object-oriented language that is idedl for this simulation. By depicting
processes, entities, and actions as objects, Java creates a tangible, intuitive, expandable,
model of redlity in its programs. This coupled with the fact that Java is a high-level,
powerful, platform independent programming language makes it an ideal programming
tool for this thesis. Simkit is a flexible simulation tool kit that alows the coupling of
many independent objects into one complex simulation. Taken as whole, Simkit and

Java offer unmatched flexibility and robustness for creating a simulation tool.

Simkit is a discrete-event simulation tool that uses next-event time advance. A
discrete-event simulation models a system as it changes state over time. Next-event time
advance simulations model only the changes in the environment, such as arrival of a
target firing of a target, etc. (Law and Kelton, p. 6). By contrast, fixed-increment time
advance simulations model the state of the system at each discrete time-step. For the
purpose of this thesis, the discrete event simulation will be discussed within the context
of the next-event time advance model. This method facilitates modeling the behavior of

the fire support battle by maintaining a high level of time fidelity while reducing run

26

times by fast-forwarding to the times in the COA that are eventful. For example, by
running a time-step scenario of a peacekeeping mission, we might find that we execute a
specific fire misson once every three months or 7,776,000 seconds plus the actual
(insignificant) mission execution time. If we ran this simulation 1,000,000 times faster
than rea time, and we wanted mission times in seconds, it would take an average of
7.776 seconds per trial and 7,776 seconds or over two hours to execute 1000 trials to get
confidence interval and variance data. By using an event-based simulation, if average
mission times were ten minutes, we would only have to execute that ten minutes for each
trial. This would take an average of 0.0006 seconds per trial and about 0.6 seconds to
execute 1000 trials. While both methods are viable and work, one is clearly a better
choice.

3. Queuing Theory

In general terms, queuing systems consist of one or more servers that provide a
service to an arriving customer. Customers arrive at discrete times for service. When
they find that al servers are busy they generaly enter one or more queues in front of the
server. Queuing models attempt to model the behavior of queuing systems by
guantifying the interarrival and interservice times of the customers and the servers (Law

and Kelton, p. 94).

The arrival and service of customers at a gas station fit the description of a system
that can be modeled using queuing theory. At a gas station, customers arrive and are
serviced in much the same manner that fire missions arrive and are serviced by available

indirect fire assets. Thisanalogy is surprisingly accurate, as will be explained below.

27

Consider for example that a car arrives at the service station. There are severa
different types of vehicles. For the purposes of a gas station there would probably be at
least four different types: those that run on regular unleaded, unleaded plus, super
unleaded, and diesel. Once we have decided what type of vehicle we have, we then look
for a pump that provides that type of fuel. If one is available we fuel up. If not, we get

into aline or queue.

Now, imagine fire missions as cars and indirect fire assets as the fuel pumps.
Each fire mission has attributes such as arrival time, type (armor, infantry, etc.), location,
and desired effects by the server (destroy, neutralize, or suppress). Each different type of
mission is defined by it attributes, which are analogous to the different types of cars

(diesel, unleaded, etc.).

The servers are the indirect fire platforms whose mission it is to change the status
of the target from its initia condition to one of destroyed, neutralized, or suppressed.
Each server or shooter has alist of attributes that facilitate its ability to inflict the desired

effects on the target. They include:

the shooter’ s location

service time and distribution of each fire mission

the shooter’ s rate of fire

lethality and accuracy of the round

the number of gun tubes associated with the shooter

the number of rounds the shooter has available

28

Each shooter is defined by its attributes, which are used to model the different types of
indirect fire assets such as Paladin battalions, DDG-51's, or M198 batteries. For the
purposes of this thesis, the FSST will assume only a few of the more common fire
mission types and will limit the characteristics of the delivery systems to what is
necessary to execute those fire missions.

4, Event Graph Development

The event graph shown in Figure 2.5 is a basic depiction of how the ssimulation
works. The actual model is too complex to show in one simple event graph, but the basic
model is depicted below in this one-dimensional event graph of a queuing model with

one target or fire mission type and one server type.

29

Repeat
(add tgt
to front)

REFIRE=0
TGT=0
S=k

queue.front()
REFIRE++

BDA <l & FLEE<m

gueue.dequeue
BDA =U(0,1)
FLEE =U(0,1)

Target
Arrives
Request
FM

BDA >=1 |
FLEE >=m

queue.back()

Parameters

ta = time between arrivals of targets

t, = time between recognizing a repeat mission and it being fired

ts= time to service the next FM in the queue

k = total number of artillery assets available

| = damage needed to ensure desired effects

m = flight criterion of target

inRange = computation to determine whether target isin range of artillery
State Variables

TGT = number of targets that have arrived St

queue = number of targetsin the queue

REFIRE = number of missionsrefiired

S=number of available artillery assets (shooters)

Figure 2.5: Event Graph
The circle with RUN sets up the queuing model by initializing al attributes. The

simulation begins with the arrival of atarget that causes the model to initiate the arrival
of another target at some discrete time, §, in the future (circle with “Target Arrives,
Request FM”). The interarrival time, t,, of the targets is modeled by random exponential
interarrival times. When a fire mission arrives, it is queued if it is within range of a
shooter (circle with “Add FM to Queue’). The algorithm discussed above determines the
shooter whose queue that fire mission goes into. If the shooter is immediately available,
the fire mission is processed ts time units later (circle with “Attack tgt”). The parameter ts

is afunction of the range from the shooter, the shooter type, and other variables.

30

Once the target is attacked, if the desired results are achieved or the target has
fled, the mission is ended (circle with “End FM”) and that shooter becomes available for
another fire mission. If that particular shooter has another fire mission in the queue, it
services that fire mission tstime units later. 1f the desired results are not achieved and the
target is still available, the fire mission is immediately repeated, with effects being
considered t time units later. The parameter t is based on the time it takes for that

particular shooter to refire the mission.

Although this event graph does not depict it, the FSST computes and maintains
the number of arrivals, the number of missions rejected for any reason (such as range or
lack of ammunition), and the number of successful and unsuccessful missions.

5. The Simulation

@ Simulation Overview

Each arriving target is identified and engaged somewhere in a box that we
consider the area of operations. To simulate different types of missions, units, and/or
tactics the user can vary the size of that box. Throughout the battle, these targets would

be identified and engaged in different areas of the box.

The distribution of the arriving targets within the box is scenario-based,
and can be varied by the user. For instance, in a guerilla-type operation where there is no
built-up enemy, and our forces are deployed in a decentralized manner, we might expect
to acquire targets uniformly across the box since the enemy has freedom of maneuver and
he is probably much more familiar with the errain than we are. By contrast, in a
conventional-type operation, we might expect to acquire targets uniformly across our

front and exponentialy in the depth of our position since we own the ground we are

31

occupying and have well-defined boundaries that are protected. Again, to best model the

scenario, the user can vary each of these.

The user will aso be able to tacticaly place his artillery battalions and
naval assets in the area of operations according to the scenario. Artillery and ships, once
placed, will not move throughout the scenario. Figure 2.6 is a graphic depiction of a
sample scenario with artillery and naval range fans depicting limits of engagement for
these assets. The user will be able to easily set up, smulate, and analyze a scenario like
this.

Arriving targets are distributed
according to some logical distribution
scheme based on the scenario
(probably exponential) in thisregion.

Arriving
targets are
distributed
accordingto
somelogical
Enemy Direction distribution <

Of Advance scheme based
onthe

scenario
(probably
uniform) in
this region.

N

Figure 2.6: Sample Scenario Graphic
Each scenario involves running the smulation for each COA listed above.

By varying the inputs for the model such as parameters for the indirect fire assets and the
properties of the area of operations (dimensions and distribution of arriving targets) the

FSST can model the scenario in which each COA will occur.

32

(b) Target Arrivals

Targets arrive a a rate corresponding to a distribution. Based on past
simulations, targets probably would arrive at an exponentia rate with a mean based on
the situation. This simulation alows the user to determine the arrival rate of the targets
and the mean interarrival time (i.e. exponential with mean 5.0). Each target will then be
further defined by its type — armor, armored personnel carriers, light skinned vehicles,
infantry in the open, or infantry dug in, and the mission associated with the target,
destroy, neutralize, or suppress. Again, the user can determine the percentages of each

type of target and the mission associated with each target.

An example of how the arrival process works is as follows. A random
number generator determines the arrival time of the first target. Another randomly
generated number stochastically determines the target type. A third randomly generated
number determines the mission associated with the target, and a random target location is
generated based on the distribution of the locations of targets. The first target then enters
the model, and another target arrives at a randomly generated interarrival time based on
the arrival distribution, and the process begins again. The distribution of target types and

mission types used for this thesis are shown below in tables 2.1 and 2.2.

Mission Types Per centage
Destroy 30%
Neutralize 50%
Suppress 20%

Table 2.1: Distribution of Mission Types

33

Target Types Per centages
Armor 40%
Infantry in the Open 10%
Infantry Dug In 0%
Armored Personnel Carrier 30%
Light Skinned Vehicle 20%

Table 2.2: Distribution of Target Types

(© Target Servicing

When a target enters the model, it becomes a fire mission and is sent to a
specific artillery or naval gunfire unit called a shooter. Each shooter is queried to
determine whether it can range the particular target and whether it has the ammunition
needed to engage the target. Once it has been determined which assets can effectively
engage the target, an asset is chosen based on a weighting of the following criteria —
platform or shooter type (NSFS or field artillery), number of fire missions in that

shooter’ s queue, probable error in range, and shooter to target range.

A version of MAUT is used for the selection of a shooter for each target.
The value of each of the first three criteria for a particular shooter is compared with the
corresponding values of all shooters that can effectively engage the target. Subscripting
the criteria being compared using the letter j, the utility of each shooter is computed with

respect to each criteria using the following formula:
Utility = (x-worst;)/(best-worst)

The total utility for each shooter is then determined using the following
formula:
€3 ... u
aq Utility, * WEIGHT, ;+ WEIGHT & + WEIGHT .,

€i=1 u
34

The shooter that gets the fire mission is the one with the highest total
utility score. If no assets have the required number of rounds to effectively engage the
target, the asset with the most rounds that can range the target is chosen. The fire mission

is then put into the shooter’s queue. Figure 2.7 below is a flow chart depicting how a

yes

specific shooter is selected.

Discard
Shooter

—»Create List 1

Pick “Best”
Shooter from

List2using Create L|St 2

MAUT
§m
Yes

Figure 2.7: Fire Mission Engagement Process
35

Pick Shooter
fromList 1
with the
most rounds

The smulation tracks which assets can and do engage, the total time
between the arrival and the execution of the fire mission, the number of successful,
unsuccessful, and regjected fire missions, and the number of rounds that cause collatera
damage. It can then, through simulation, assign values to each MOE under each COA.

(d) Target Engagement

Each shooter engages targets when they are at the front of the queue and
no targets are being serviced. The processing time (t,) and engagement times (te) are
randomly determined from the distribution of the processing and engagement times
entered for that shooter, and the time of flight (tof) for the rounds is computed based on
the target range. By accounting for the rate of fire, the number of rounds desired, and the
number of guns associated with the chosen shooter the total time for the fire mission can

be computed using the following formula:

tp + te + tof + #rounds)/(# tubes)ur (rate of fire)

(e Mission Success

The location where each round lands is determined stochastically using the
probable error in range, probable error in deflection, and shooter-target range. The
definition of success for a particular mission is pre-determined in the scenario, and is a
function of the number of rounds that land within a certain distance of the target for a
particular target type (i.e. armor) and mission type (i.e. destroy). For destroy and
neutralize missions that distance is the burst radius of the round. For suppression
missions, that distance is 2 times the burst radius since the objective is mainly to distract
and rattle the enemy, not to kill him. To determine if the mission is successful, the

simulation compares the number of hits needed with the number of hits the target has

36

already sustained plus the number of additional hits if any. If the total number of hits

sustained is greater than or equal to the number needed, the mission is successful.

If a mission is successful, the mission is ended, and the shooter fires the
next misson in the queue, or waits for the next mission if none are currently queued. If
the mission is not successful, the target “remembers’ how many rounds have had the
desired effects, and the mission is repeated if 1) the target has not fled — determined
stochastically by scenario intput and 2) if the shooter still has rounds available. If both
conditions are met, the mission is repeated. If not the mission is ended and is
unsuccessful. The engagement time for repeated missions is generally faster than for the
initial wolley. The assumption is that the guns are already trained on the target, and are
awaiting repeat or end of mission orders. The following formula determines the time for

repeating the mission:
tof + &#rounds)/(# tubes)u/ (rate of fire)

This process is repeated until either the mission is successful, the target
flees, or the shooter runs out of ammunition. The total mission time is then computed
and tallied. Successful and unsuccessful missions are also tallied.

) Rejected Missions

If atarget cannot be engaged because there are no shooters available with
any ammunition, that mission is rejected. Reected missions are talied during the

simulation.

37

(9) When a Shooter Runs Out of Ammunition

If a shooter runs out of ammunition, the current mission being fired ends
successfully or unsuccessfully as outlined above, and al missions in that shooter’s queue
arerejected.

(h) Collateral Damage

Collateral damage can occur each time that a target is engaged. If around
misses its intended target by more than a distance predetermined in the scenario, that
round can cause collateral damage. Each errant round causes a random number to be
generated, which determines stochastically whether that round causes collateral damage
according to a predetermined percentage of errant rounds that cause collateral damage (a
scenario input).

(i) Coverage Area

The area of the box that the course of action being simulated can cover is
known as the coverage area. The closer the number is to one, the better the COA iswith
respect to that particular MOE. In order to determine the coverage area, the ssimulation is
run for the particular COA using 100,000 target arrivals to get as accurate a measurement
as possible. Additionally, each shooter is given an infinite number of rounds and the
targets arrive at a location uniformly distributed within the box. The coverage area can
then be measured by taking the number of missions accepted and dividing by the total
number of missions. This number is then input into the COA being simulated as a
parameter.

E. SCENARIO DEVELOPMENT

A scenario consists of the parameters that quantify enemy and friendly actions,

the effects of the environment and terrain on the military operation, the level at which the
38

battle is being executed, and the year in which the effectiveness of NSFS is being
measured. These parameters are kept constant for each COA within the scenario so that

COA'’ s can be compared using a common criterion.

Terrain quantifying parameters include the size of the area of operations (AO), the
definition of an errant round, and the probability of collateral damage by an errant round.
Enemy parameters include the rate at which targets arrive, their location in the AO, and
the target type (armor, infantry, etc.). Friendly parameters include the distribution of the
mission types (i.e. destroy, neutralize, suppress), the attack criterion for different targets
(i.e. how many rounds to fire in suppression of armor), and the definition of a successful
mission in terms of how many target hits are required to get the desired effects.
Additionally, the scenario includes the weighting scheme the decision maker uses to

choose an asset to engage targets, which will be explained in more detail |ater.

The level of the battle is the echelon at which the kettle is being fought. Both
scenarios for this thesis focus on providing indirect fire support for an Army brigade-
level unit. The year that the scenario models does not determine parameters for the
scenario in and of itself, rather it determines what technol ogies and systems are projected
to be available, which in turn dictate the parameters of the artillery platforms to be used

in each COA. Thiswill be explained in more detail in the next section.

The terrain, enemy and friendly parameters, and level of the battle will remain
basically the same for each of the following two scenarios being modeled. Additionaly,
since the objective of the thesis is to measure the effectiveness of NSFS to the Army
brigade commander, the battle for both scenarios is limited to the brigade fight. The

major differences between the two scenarios will be the year in which they occur.
39

1. Scenario1l-I1BCT

This scenario is caled the IBCT scenario because it is centered upon the year
2005, and therefore limits the COA’s to equipment that is either available now or is
projected to be available by year 2005. For the field artillery, this means the M109
Paladin is available with a maximum firing range of 30,000 meters. For the nava gunfire
this means using DDG-51's with a maximum range of 63 nautical miles (about 112,300
meters).

2. Scenario 2—-FCS-OF

The FCS-OF scenario models the effectiveness of indirect fire systems that are
projected to be available by year 2015. For the field artillery, this means the Crusader is
available with a maximum firing range of about 45,000 meters. For the naval gunfire this
means using DD-21 with guns having a maximum range of about 100 nautical miles
(about 162,000 meters).

F. COA DEVELOPMENT

Each COA is developed within the context of a specific scenario that determines
the year and the tactical and operational considerations of the battle. The year determines

the firing platforms available for the COA.

Each COA developed with the scenario includes which firing platforms are being
used, their technical capabilities and limitations, and their locations on the battlefield.
The technical capabilities and limitations of the firing platforms include maximum range,
firing rate, probable error in range and deflection, distributions for target processing and

preparation for firing, and the bursting radius of a single round.

40

The overall objective of the experiment is to measure the effectiveness of NSFS
within the context of each scenario. Carefully designing three or four COA’s in each
scenario helps to isolate the effect being measured. Tables 2.3 and 2.4 below show an

overview of the COA’s and the factors that are varied or changed for each COA.

COA (samefor each Scenario)
FACTORS A B C 5
Field Artillery 3 0 6 3
Naval Ships 0 3 0 3
Table2.3: COA Overview
Par ameter IBCT FCS-OF
FA NSFS FA NSFS
Number Guns 6 2 4 2
Rounds per Ship/Battery 2520 2400 2520 2400
Range (1000’ s meters) 30 112 45 162
Munition Burst Radius 50 75 50 75
PER 35 100 1 10
PED 2 2 1 2
Max Rate of Fire 8 24 12 24
Acquisition Time Distribution | Normal Normal Normal Normal
Mean Acquisition Time 4.0 5.0 2.0 2.5
Acquisition Std Deviation 0.75 1.0 0.25 0.5
Firing Time Distribution Normal Normal Normal | Normal
Mean Firing Time 1.0 0.5 0.25 0.5
Firing Time Std Deviation 0.2 0.1 0.05 0.1

Table 2.4: Hardware Parameter Overview

1 Organic Army Fire Support Only

This COA is the base-line model for the effectiveness of Army indirect fires. It
involves running the simulation with only one organic Field Artillery battalion in direct

support of a maneuver brigade.

41

(@ IBCT

A
(24,70)
40 (FLOT)
X X X
(6,30) (12,30 (18 30)
(0.0) v
Figure 2.8:

The AO properties

X distribution = Uniforn(0, 24)

Y distribution = Exponential (50)
Arrival distribution = Exponenti al (2.5)

Shoot er properties
nmeanProj ectil eVelocity =
Pal adin Battery:

acqui reServiceDi stribution = Nornal
neanAcquirelnterservice = 4.0
sigmaAcquire = 0.75
firingServiceDistribution
meanFi ringlnterservice =
sigmaFiring = 0.2
in rounds per mnute

maxRateOfFire = 8

70000 m min

Nor mal
.0

=l

thePER = 35

t hePED = 2

nunber Rounds = 2520
shoot er Range = 30000
bur st Radi us = 50

nunber Guns = 6
Wei ghts to determine the “best” shooter
range = 0.125
thePER = 0. 125
nunmber Rounds = .5
FieldArtillery = 0.25
NSFS = 0. 00

Run execute properties
stopEvent = TargetArrival
st opEvent Count = 425

IBCT COA 1A

42

() FCS

The AO properties

A X distribution = Uniform(0,50)
Y distribution = Exponential (90)
(50,120) Arrival distribution = Exponential (2.5)

Shoot er properties
nmeanPr oj ectil eVel ocity = 100000 mi mi n
Crusader Battery:
acqui reServiceDi stribution = Nornal
neanAcquirelnterservice = 2.0
sigmaAcquire = 0.25

80 (FLOT) firingServiceDistribution = Nor mal
- - - meanFiringlnterservice = 0.25
sigmaFiring = 0.05
(12570) (2570 (3757m #in rouqu per mnute
maxRateOfFire = 12
thePER = 1
thePED = 1

nunber Rounds = 2520
shoot er Range = 45000
bur st Radi us = 50
nunber Guns = 4
Weights to determ ne the “best” shooter
range = 0.125
thePER = 0. 125
nunber Rounds = .5
FieldArtillery = 0.25
NSFS = 0. 00

v

(0,0)

Run execute properties
stopEvent = TargetArrival
st opEvent Count = 425

Figure 2.9: FCS COA 2A

2. NSFSOnly

This COA serves as a base-line model for the effectiveness of indirect fires
provided by naval assets. It involves running the smulation with the NSFS fire-power

equivalent of one Army field artillery battalion in direct support of a maneuver brigade.

43

(@ IBCT

A
(24,70)
40 (FLOT)
00) "

¢ ¢ ¥

(6,-40) (12-40) (18-40)

The AO properties

X di stribution = Uniform0, 24)

Y distribution = Exponenti al (50)
Arrival distribution = Exponential (2.5)

Shoot er properties
nmeanProj ectil eVel ocity = 70000 m min
DDG 51:
acqui reServiceDi stribution = Nornal
meanAcqui rel nterservice = 5.0
sigmaAcquire = 1.0
firingServiceDistribution = Nornal
nmeanFiringlnterservice = 0.5
sigmaFiring = 0.1
in rounds per mnute
maxRateOf Fire = 24
t hePER = 100
thePED = 2
nunber Rounds 2400
shoot er Range 112000
burst Radius = 75
nunber Guns = 2
Weights to determine the “best” shooter
range = 0.125
thePER = 0. 125
nunber Rounds = .5
FieldArtillery = 0.25
NSFS = 0. 00

Run execute properties
stopEvent = Target Arri val
st opEvent Count = 425

Figure 2.10: IBCT COA 1B

() FCS

The AO properties

X distribution = Uniforn{0,50)

A Y distribution = Exponenti al (90)
Arrival distribution = Exponenti al (2.5)

(50,120)
Shoot er properties
neanProj ectil eVel ocity = 100000 mimn
DD21:
acquireServiceDistribution = Normal
meanAcquirelnterservice = 2.5
sigmaAcquire = 0.5
firingServiceDistribution = Nornal
80 (FLOT) neanFiringlnterservice = 0.5
sigmaFiring = 0.1
in rounds per mnute
maxRateOFFire = 24
thePER = 10
thePED = 2
nunber Rounds = 2400
shoot er Range = 162000
bur st Radi us = 50
nunber Guns = 2
Wei ghts to determne the “best” shooter
range = 0.125
thePER = 0. 125
(0,0) nunber Rounds = .5
FieldArtillery = 0.25
NSFS = 0. 00

- - # Run execute properties
stopEvent = Target Arrival

(125.-40) (25-40) (37.5.-40) st opEvent Count = 425

v

Figure2.11: FCSCOA 2B

3. Organic Army Fire Support with Reinforcing Army Fires

This COA involves adding one field artillery battalion to the base-line organic fire

support model.

45

The AO properties

X distribution = Uniforn(0, 24)

Y distribution = Exponential (50)
Arrival distribution = Exponential (2.5)

Shoot er properties
nmeanProj ectil eVelocity = 70000 m min
Pal adin Battery: See above
Weights to determne the “best” shooter
range = 0.125
t hePER = 0. 125
nunber Rounds .5
FieldArtillery = 0.25
NSFS = 0. 00

Run execute properties
st opEvent Target Arrival
st opEvent Count = 425

IBCT COA 1C

The AO properties

X distribution = Uniform 0, 50)

Y distribution = Exponenti al (90)
Arrival distribution Exponenti al (2. 5)

Shoot er properties
nmeanProj ectileVelocity = 100000 m/ m n
Crusader Battery: See above
Weights to deternmine the “best”
range = 0.125
thePER = 0. 125
nunber Rounds .5
FieldArtillery = 0.25
NSFS = 0. 00

shoot er

Run execute properties
st opEvent Target Arri val
st opEvent Count = 425

@ IBCT
A
(24,70)
40 (FLOT)
(6.9,30) (13.7,30) (20.6.30)
B D O g
34,30) (10.3,30) (17.2,30)
00) -
Figure 2.12:
(© FCS
A
(50,120)
80 (FLOT)
B0 0 O 5 5 B
(7.1,70) (21.4,70) (35.7,70)
(14.3,70) (28.6,70) (42 & 70\
00) "
Figure 2.13
4,

This COA involves adding the NSFS fire-power equivalent of one field artillery

: FCSCOA 2C

Organic Army Fire Support with Reinforcing Naval Fires

battalion to the base- line organic fire support model.

46

(@ IBCT

A The AO properties
(24.70) X distribution = Uniform0, 24)
' Y distribution = Exponenti al (50)
Arrival distribution = Exponential (2.5)
Shoot er properties
meanProj ectil eVel ocity = 70000 mim n
Pal adin Battery: See above
DDG 51: See above
. Wi ghts to determine the “best” shooter
40 \ (FLOT) range = 0.125
- - X thePER = 0.125
nunmber Rounds = .5
(6,30) (12,30 (1830 FieldArtillery = 0.25
NSFS = 0. 00
Run execute properties
stopEvent = Target Arrival
st opEvent Count = 425
(0.0) -

v ¢ ¥

(6,-40) (12,-40) (18,-40)

Figure 2.14: IBCT COA 1D

47

() FCS

The AO properties

A X distribution = Uniforn(0, 50)
Y distribution = Exponenti al (90)
(50,120) Arrival distribution = Exponential (2.5)

Shoot er properties
nmeanPr oj ectil eVel ocity = 100000 m mi n
Crusader Battery: See above
DD21: See above
Weights to determ ne the “best” shooter
range = 0.125

80 (FLOT) thePER = 0. 125
. . | nunber Rounds = .5
. . . FieldArtillery = 0.25
(125,700 (2570 (37 570) NSFS = 0. 00

Run execute properties
stopEvent = Target Arrival
st opEvent Count = 425

v

(0,0)

(125-40) (25-40) (37.5,-40)

Figure 2.15: FCS COA 2D

G. CONFIRMING THE ACCURACY OF THE MODEL

The accuracy of this simulation was confirmed entirely by the author. The
process used was an iterative approach that included many ad- hoc techniques.

1. I nput
@ Weapons Characteristics

The data that were used for the individual weapons characteristics came
from published sources on the individual weapons. Data that were not accessible, such as
probable errors in range and acquisition times were “best guess’ data that made sense.
The overall data set used for each weapon is not 100% accurate, but it is fairly close to

the actual data and is a suitable substitute to demonstrate the effectiveness of the FSST.

48

(b) Area of Operations and Battlefield

The area of operations consists of the size of the area and distribution of
targets and target types. The parameters regarding the area of operations were estimated
for each of the two scenarios from the current doctrinal battle space of an Army brigade.

The estimate accounts for the role of the future IBCT and FCS brigade sized units.

The parameters for the distribution of targets are exponential through the
depth and uniform across the breadth of the battle-space. The uniform distribution along
the breadth of the battle-space models a brigade that fights along a front with the enemy
attacking uniformly along that front. The exponential distribution models a higher
likelihood of detecting targets towards the front of the battle-space, while accounting for
enemy units that evade front-line defenses and are detected deeper within the unit's
battle-space. The actual mean for the exponentia distribution was derived by

experimenting with severa until the results made sense to the author.

Additional parameters for the model dictate how likely an enemy isto flee
if not successfully engaged, the miss distance for around to be considered errant, and the
probability of an errant round causing collateral damage. All parameters used for the

area of operations and the battlefield are shown below in Table 2.5.

49

Parameter IBCT FCS

Box: width x depth (km) 24 X 70 50 X 120
Distribution of Targets Uniform Uniform
along width (front)
Distribution of Targets . _ . _
along depth Exponential (mean = 50) Exponential (mean = 80)
Arrival Intervals (min) Exponential (mean = 2.5) Exponential (mean = 2.5)
Flee Probability 0.9 0.9
Miss Distance for Errant 400 400
Round
Probability of Collateral 0.01 0.01

Damage by Errant Round

Table 2.5: Areaof Operations and Battlefield Parameters
The parameters that determine the percentage of enemy units that are

mechanized or light and the percentage of missions that are destroy, neutralize, and
suppress were selected based on the experiences of the author. Although they do not
represent a validated Army scenario, they provide the necessary information to
demonstrate and test the FSST. They were depicted earlier in Tables 2.1 and 2.2.

(© Attack Guidance

The attack guidance parameters dictate the number of munitions to fire at
a specific target type. They were selected based on the author’s experience and are
shown below in Table 2.6 along with the parameters for a successful engagement.

(d) Success Parameters

These parameters determine the number of rounds that must score a hit on
the target to inflict the damage necessary for a successful mission. A successful “hit” for
a destroy or neutralize mission occurs when the round lands less than one burst radius
away from the target. A successful “hit” for a suppression mission is when the round
lands less than two burst radii away from the target. These parameters were selected

based on the experience and intuitions of the author.

50

. Engagement Criterion (rds) SuccessCriterion
Target/Mission Type IBCT | FCS (hits)
Armor
Destroy 36 18 18
Neutralize 24 12 12
Suppress 3 3 1
Infantry in the Open
Destroy 6 3 3
Neutralize 3 3 2
Suppress 3 3 1
Infantry Dug In
Destroy 24 6 6
Neutralize 9 4 4
Suppress 3 3 1
Armored Personnel Carrier
Destroy 24 12 12
Neutralize 18 9 9
Suppress 3 3 1
Light Skinned Vehicle
Destroy 18 9 9
Neutralize 12 6 6
Suppress 3 3 1

Table 2.6: Target Engagement and Success Criterion

2. Output

The accuracy of the output from the model was checked in three separate ways

throughout its development. They are discussed in detail in the following paragraphs.

(@)

At each stage in the development of the simulation the output was checked
to ensure it made serse based on the input parameters. An example would be when
determining the average time that it took for missions to be processed. A negative
number would not make sense. That indicated a problem in the coding or the logic.

Although not an entirely scientific approach, this method ensured that the answers made

sense.

Common-Sense

51

(b) Sequential

The sequential method pertains to checking a portion of the simulation as
it is being developed using “canned” and oversimplified inputs. By checking each class

against the desired output the ssimulation was verified in the most basic case.

As the simulation grew and more and more Java classes became
interconnected, the actual answers to the output were no longer known. The experiences
from repeatedly testing and running the simulation gave the author the insight needed to
informally verify the output as the simulation became more and more complex. In this
case the output was tested and verified in the same manner, except that instead of
comparing the answer to a known solution it was smply checked to see if it made sense.
For example, suppose the ssmulation consisted of 15 classes that seemed to run correctly.
If another class or an enhancement of an existing class were being added that should
refine the simulation, it would be run in the generic case where the refinement should
make absolutely no difference. If that worked, the parameters would be adjusted to see if
the enhancement did what it was intended to do. If it did, it was considered to function
correctly.

(© Parameterization

Varying the inputs to the model should make certain things occur. For
instance, by increasing the range of a weapon system, the number of reected missions
should decrease. Thistype of verification was done for virtually all of the parameters. It
is worth noting that in some cases what is expected and what actually occurs are not the
same. This did not necessarily indicate that the ssmulation was not running correctly or

capturing the effects of those parameters correctly. Instances where parameterized input

52

did not yield outputs that made sense were investigated and corrected if needed. If it was
determined that the particular instance actually was modeled correctly, the author
generaly found that the suspect output was the result of another parameter or modeling
decison. For instance, as stated above increased range should result in less missions
being rejected. If it did not, it might not mean the model is faulty. In one particular
instance this modification resulted in a specific shooter running out of ammunition very
early and not being able to cover his area of the battle-space. This resulted in an increase
in the number of missions rejected, which does make sense. These anomalies provided

insight that was unknown to the author earlier.

53

THISPAGE INTENTIONALLY LEFT BLANK

1. ANALYSISOF SIMULATION OUTPUT

A. OVERVIEW

Before analyzing the output, areview of the problem isin order. For the purposes
of this paper, NSFSis artillery provided by naval platforms. Available data on naval and
Army artillery indicate the strengths of naval platforms with respect to Army platforms
are in extended range and rapid rates of fire. Inherent weaknesses are in the areas of
probable error in range and deflection, time for coordination of fires, and time of flight
due to stationing of naval platforms at least 40 kilometers from shore. Based on this
information, the objective of this thesis is to determine the effectiveness of NSFS to the
Army at brigade level and below in a littoral campaign. Stated another way, do the
strengths of naval platforms outweigh the inherent weaknesses of those platforms for the

purposes of providing fire support for Army units at brigade level ?

The focus of the analysis of the data was to determine the effectiveness of NSFS
to the Army brigade commander. Multi-attribute utility theory (MAUT) was used to
determine the utility of a particular COA within each scenario. Using the MAUT
procedure, the output from the simulation can determine the utility of each COA relative
to the other COA’s in that particular scenario. Effectiveness of NSFS can be measured

by comparing COA’s with and without NSFS.

By replicating each course of action, the simulation can produce confidence
intervals on the utility of each COA. These data are useful because they give the user an
idea of the robustness of a specific COA and alow the analyst to determine whether there
is a significant difference in the utility between competing COA’s. Fifty replications
were made for each COA in order to get a range of output values. This range of output

55

values was needed to compare the COA’s using the analysis of variance techniques
discussed later.

B. DESIGN OF THE EXPERIMENT
This experiment was designed to measure the effectiveness of NSFS using a

common sense approach. The objective was to create and execute a design that was
simple and could be easily understood by the end user, a military officer unschooled in
operations research techniques. Because of this restriction, the design consisted of a
relatively simple simulation program written in Java that provided easily interpreted
output. The intent of the model was not to simulate every aspect of the indirect fire fight,
but to smulate the more important aspects that are needed to determine the effectiveness
of NSFS. The MOE’s from the previous chapter determined the output needed for the
simulation and the level of complexity with which to simulate the indirect fire battle.

1 Experiment

The experiment consisted of fou different COA’s or levels for each scenario,
each with seven MOE’s. Each of these COA’ s was replicated 50 times, for atotal of 400
simulation runs producing a total of 2800 individual pieces of data The data were
collated and processed using the MAUT methodology weighting each MOE equally.
This produced 50 sets of finalized output in the form of utility for each COA, or 200
separate bits of numerical output each of which was linked to a specific COA for each
scenario. This data served as the baseline case to measure the utility of each COA. The

experiment is depicted below in Table 3.1.

56

Replications
COA IBCT FCS
Army Only 50 50
Navy Only 50 50
Army w/ Reinforcing Army 50 50
Army w/ Reinforcing Navy 50 50
TOTAL 200 200

Table 3.1: Experimental Design

2. Data Analysis

Once the experiments were complete, a cursory look at the data was done for two
reasons — to see if the output made sense (verification) and to see if any broad insight
could be gained from it.

@ Verification
The mean values for each of the MOE's for each COA in each Scenario

are shown below in Table 3.2.

FMT | NAS | PF | TPS | PS | CD | CA | COA

IBCT

11.1487 | 13174 | 07528 | 0.7071 | 0.9412 | 0.0000 | 0.8462 A

756035 | 04644 | 0.9956 | 03156 | 0.3170 | 3.2400 | 1.0000 B

7.3585 | 43069 | 0.7535 | 0.7098 | 0.9427 | 0.0000 | 0.8534 C

10.3692 | 3.5583 | 0.9976 | 0.7473 | 0.7491 | 1.7800 | 1.0000 D
FCS

3.28651 | 2.12820 | 0.78983 | 0.54991 | 0.69632 | 0.0000 | 0.7414 A

10.1904 | 1.22583 | 0.9976 | 0.19579 | 0.19626 | 3.6400 | 1.0000 B

2.95028 | 5.11194 | 0.8024 | 0.54684 | 0.68154 | 0.0000 | 0.7478 C

3.62385 | 4.77277 | 0.97967 | 058253 | 0.59463 | 1.0200 | 1.0000 D

Table 3.2 Mean MOE Performance
COA A consists of three batteries of Army artillery, COA B consists of three ships, COA

C consists of six batteries, and COA D consists of three batteries and three ships. As
expected, the average fire mission times (FMT) declined and the number of available
shooters (NAS) increased as more assets were added to the base case. Due to the

extended range of Naval gunfire, it was expected that the area of the battlefield covered

57

(CA) and the percentage of missions fired (PF) for COA’s with ships would be higher,
and they are. Additionally, due to a combination of the lower accuracy of Naval guns
and the extended ranges that Naval missions incurred, the number of mission causing
collateral damage (CD) should have been higher for COA’s with ships as well, and it
was. Predictions for the success rate for missions fired (PS) and the total success rate for
all arriving targets (TPS) are difficult to predict, but the expectation is that adding Naval
gunfire to the equation would increase TPS due to the ability to fire targets, but PS would
decrease due to the inaccuracy of the added firepower. Overal the data seemsto indicate
that the simulation was functioning correctly and yielding data that made sense.

(b) I nsight
@ Average Fire Mission Times. Due to the extended

range of the missions fired by Naval gunfire, the fire mission times were severely
degraded for COA’s with NSFS. By adjusting the parameters for which asset to chose
for firing missions, however, this can be mitigated. The objective is to improve the
overal effectiveness of indirect fires. By adjusting the weighting of the variables that
decide who fires what mission — range, PER, number of available rounds, and whether
the asset isfield artillery or NSFS, the ssmulation can use NSFS for those missions that it
is most effective at engaging.

2 Collateral Damage. COA'’s that included NSFS had
a significantly higher incidence of collateral damage. Although not too surprising, it is
important to keep in mind due to the sensitive nature of the the missions the US has been
engaged in lately. To mitigate this, it is necessary to ensure that NSFS is used for

missions that have low probability of such occurrences. This is possible on a tactical

58

level, but may be impractica when planning large-scale operations that synchronized all
available indirect fires.

3 Coverage Area. The coverage areas of COA’s with
NSFS was significantly higher than those without. The significance of this event is that it
shows that NSFS can cover areas that traditional Army artillery cannot. In the scenarios
created for this thesis, those areas are the rear and deep areas of the operation. Since
Army artillery is traditionally pushed forward to support engaged units, units are not
positioned to support rear echelon missions. Those missions are generally fired as targets
of opportunity when they are in range. NSFS can cover that dead space, contributing to
the overall success of the mission. Due to the imited range of Army artillery, it can
generaly not engage the enemy deep in the battlefield. NSFS can be used to engage
targets before they enter Army artillery range to help shape the future battle for enaged
units. These shaping missions can disrupt the enemy’s assault, canalize him into
prepared kill zones, and attrite him before he enters the close fight.

3. Analysisof Variance (ANOVA)

At first glance it would appear that a two-factor ANOVA test should be used to
anayze the effects of COA and Scererio on the output. A closer look at the experiment
however, shows that there are significant differences between like COA’s in different
scenarios. The locations of the assets, the size of the area of operations, and the
specifications of the assets all differ immensely between scenarios. For these reasons, the
author opted to perform two separate one-factor ANOVA tests to test the null hypothesis
(Ho) that the treatment (COA) means were identical, or that total utility is not affected by

COA selection (Devore, 390-391). For both scenarios, the null hypothesis is rejected,

59

indicating that there was a statistically significant difference between at least one of the

treatments and the remainder of the treatments in each scenario.

To determine which, if any, of the COA’s were different from one another,

multiple comparisons was used. The question that remained to be answered was to
decide for each i and j whether m = m. Tukey’s procedure, the T Method, was used to
produce a collection of simultaneous confidence intervals about the true value of all
differences m and m. If the confidence interval for a specific difference contained the
value zero, then those two samples were deemed equal at level a of the experiment. For

this experiment, a was set at 0.05 (Devore, 401-402).

This analysis was performed using SPLUS and indicated that the differences
between all treatments were significant. For both scenarios the COA’s containing Army
field artillery with reinforcing Naval gunfire were superior. The output for the T Method

is shown below in Tables 3.3 and 3.4.

Estimate | Std.Error | Lower Bound | Upper Bound | Includes Zero
1A-1B 0.846 0.0393 0.744 0.948 NO
1A-1C -0.799 0.0393 -0.901 -0.697 NO
1A-1D -1.970 0.0393 -2.070 -1.860 NO
1B-1C -1.640 0.0393 -1.750 -1.540 NO
1B-1D -2.810 0.0393 -2.910 -2.710 NO
1C-1D -1.170 0.0393 -1.270 -1.060 NO

Table 3.3: IBCT COA Comparison using T Method

Estimate | Std.Error | Lower Bound | Upper Bound | Includes Zero
2A-2B 1.090 0.042 0.983 1.200 NO
2A-2C -0.782 0.042 -0.891 -0.673 NO
2A-2D -2.080 0.042 -2.190 -1.970 NO
2B-2C -1.870 0.042 -1.980 -1.770 NO
2B-2D -3.170 0.042 -3.280 -3.060 NO
2C-2D -1.300 0.042 -1.410 -1.190 NO

Table 3.4: FCS COA Comparison using T Method

60

The boxplots of the utility for the different COA’s are shown below in Figures 3.1
and 3.2. They show the performance of each COA by depicting the median as a stripe.
The box contains both the upper and lower quartiles. The whiskers of the boxplot are
depicted by the brackets which contain the lower and upper bounds of the data defined as
1.5*(Inter-Quartile range). Outliers are shown as stripes outside of the bracketed data.
They are a useful graphical depiction of the performance of the different COA’s that give

the user an easy to interpret depictionof the data.

Boxplot of Utility of IBCT COAs with all Weights Equal

ﬁ
o] 1
0 — H
]
| IS
< ———|
_
o — =.
—
1A 1B 1c 1D

Figure 3.1: Boxplot of IBCT COA’s

61

Boxplot of Utility of FCS COAs with all Weights Equal

| e a—
B
© —
1
. —
r—;—r
“ =
I.;l
2A 2B 2C 2D

Figure 3.2: Boxplot of FCS COA’s
The final output (the T Method comparison tables and the boxplots) from the

experiment meets the requirements of simplicity. Most people understand the theory
behind confidence intervals and can comprehend the basic idea behind Tukey's
comparisons of m and nm. The boxplots, although somewhat simplistic, provide asimple,
graphical depiction of each COA’s median utility and range.

4, Senditivity to Weights

For this particular experiment, all MOE’s were weighted equally. The actual
weighting of each MOE is best |€eft to the professional judgement of the leaders and staffs
involved in the conflict. Equal weighting results in each MOE having about 14% of the
total weight. To demonstrate the sensitivity that the analysis has to the weighting of each
of the MOE’s, one MOE was given 50% of the total weight, resulting in each remaining
MOE having roughly 8.33% of the remaining weight. This procedure was replicated

62

is shown below in Figures 3.3 and 3.4.

seven times (once per MOE). The boxplots for each of those branches from the base case

Boxplot of Utility of IBCT COAs with all Weights Equal

Boxplot of IBCT COAs - Fire Mission Time = 50%

——
. = ==
. : =
—_— | —_—
b et
s] ==
i
= & —_
1
4 $
5 w] i
—
R J—
|
i —
2
n B 1 1 " ® 1c 1
Boxplot of IBCT COAs - Number of Available Shooters = 50% Boxplot of Utility of IBCT COAs - Percent Fired = 50%
% < ==
o1 = S —_
24
60- o =
24 .._i_.
= N
==
o] . p—
= =
i
° —
R —_
L =
20-
n 18 1c 1 " o - -
Boxplot of IBCT COAs —
Boxplot of IBCT COAs - Percent of all Tgts Successfully Eng = 50% Percent of Fired Tgts Successfully Eng = 50%
e -
. 1 = ==
— I = ==
JE— 70
= .
60- B
EY
- 40- —
)
= o] E
0 —
1A 1B 1c 1D " ® © e
Boxplot of IBCT COAs - Collateral Damage= Boxplot of IBCT COAs - Percentage of AO Covered = 50%
—
| 8 =
=
& = i 21
—_ A
| = =
|
o] o —
24
40 —
i o =
| !
ZD- 1A B 1c 10
n ® 1c 1

Figure 3.3: Boxplots of Different Weightings for IBCT

63

Boxplot of Utility of FCS COAs with all Weights Equal Boxplot of FCS COAs - Fire Mission Time = 50%
=] ==
1 i < ==
—— 2+
4 =
- <
.]
I e
2 B 2 0 n 2 0
Boxplot of FCS COAs -Number of Available Shooters = 50% Boxplot of FCS COAs - Percent Fired = 50%
= =
2 =—| —
84
o o T
1 ==
24 — —_
p—— @ i
== —_
1 24]
i
= | = L
ol — !
« —l
A B c pol
2A 2B 2c 2D
Boxplot of FCS COAs - Percent of Tgts Successfully Eng = 50% .
Boxplot of FCS COAs - Percent of Tgts Fired Successfully Eng = 50%
:
i
q T = 5
EL —l # — -
= ._|_.= -
N — o]
2 —_—
<4 w7
° —_— - _
] 2
2A 2B 2c 2D 2A) 2c 2D
Boxplot of FCS COAs - Collateral Damage = 50% Boxplot of FCS COAs - Percentage of Area Covered = 50%
E N =
T = | 1
= |
—_ il e E
24 |
24 I.—I—l
L
94
| £y ==|
i =
K4 24
£

|

Figure 3.4: Boxplots of Different Weightings for FCS

These boxplots show how the utility for the COA’s in the IBCT and FCS
scenarios are affected by changes in the weights of the various MOE's. This output is
helpful because it gives the user an idea of the sensitivity that the output has to the utility.
In addition to the medians of the utility shifting up and down, changing the weights

affects the spread too.

Looking at a specific boxplot — IBCT with Collateral Damage weighted at 50%
we notice that the COA 1C and 1D (organic Army fires with reinforcing Army and Navy
fires) both appear to have similar means. In fact, the T Method confirms that there is no
statistical difference in the means for those two treatments as shown below in Table 3.5.
In this specific COA using the weights listed above, the commander has more to consider
than he might if the utility of the COA’s were significantly different, as in the base case.
Although both COA’s are similar, the variances of the overall utility of each COA are

much different and could be an important factor in his decision.

Estimate | Std.Error | Lower Bound Upper Bound Includes Zero
1C-1D 0.881 1.64 -3.36 5.12 YES
Table 3.5: Comparison of IBCT COA 1C and 1D (Collateral Damage = 50%)

Changes in the weighting scheme for a single MOE result in linear changes to the

utility. However, the effects of higher order changes (changing the weights of two or
more MOE’s simultaneously) have not been fully explored. It is suspected that higher
order changes will result in monotonistic changes in the overall utility (e.g. if changing
the weight of MOE’s one and two individually shift the utility in favor of a particular
COA, then increasing the weight of both simultaneously should shift the utility in favor
of the same COA). Shown below is a boxplot of the effect of changing the weights of
collateral damage and fire mission times, both of which favor COA 1D, to 80% of the

total utility (40% each) for the IBCT scenario. The remaining MOE’s are now worth a
65

mere 4% of the total utility. The boxplot of the results shown below in Figure 3.5 now
seems to indicate that COA 1D is the preferred COA. The T Method results shown
below in Table 3.6 indicate that there is no significant difference between COA’s 1A and
1D using this weighting scheme. However, the COA with the most utility is COA 1C,
which is evident by the fact that the confidence interval for 1A — 1C is negative, and 1C —
1D is positive.

Boxplot of IBCT —
Fire Mission Time = 40%, Collateral Damage = 40%

—_ ;

80| —

60

40

20) —

1A 1B 1C 1D
Figure 3.5: Boxplot of IBCT Utility
Estimate | Std.Error | Lower Bound Upper Bound Includes Zero

1A-1B 37.70 1.42 33.90 41.400 NO
1A-1C -4.23 1.42 -8.02 -0.448 NO
1A-1D 1.08 1.42 -2.70 4.860 YES
1B-1C -41.90 142 -45.70 -38.100 NO
1B-1D -36.60 142 -40.40 -32.800 NO
1C-1D 531 142 1.53 9.100 NO

Table 3.6: Comparison of IBCT COA'’s (Fire Mission Time = 40%, Collatera Damage = 40%)

66

This analysis does not produce specific answers as to what the effectiveness of
NSFS is. Rather it shows that the answer is a function of the inputs to the COA’s and
scenarios and the weights attributed to each MOE. If the commander weighted all
MOE’s equally and relied entirely on the output from this experiment, the logical choice
for both the IBCT and FCS scenarios would be to use the organic Army Artillery
Battalion in direct support reinforced by Naval gunfire. Different scenarios will certainly
result in different results.

C. LIMITATIONSOF THE ANALYSIS
1 Input and Output

This analysisis built upon a number of significant assumptions, the first of which
is that the simulation accurately models and measures the MOE's. Additionaly, as with
any simulation or analysis, the input variables dictate the output. Several assumptions
and “best guesses’ were made to get reasonable input variables. Some of the input
variables, such as number of rounds required to destroy, neutralize, or suppress enemy
armor are classified information. Others, such as probable errors in range and deflection
for weapon systems were estimated for several reasons. First, since they vary with range
and propellant type and amount used, they are average measures. And secondly, since
the actua tables with the actual data are not available to the general public, best guess
data was used.

2. Decision Aid

The FSST and the analysis presented here are meant as a decision aid. They are
not intended to replace decision-makers or leaders. Those individuals are charged with

the ultimate responsibility for what occurs as aresult of their decisions. Their experience

67

coupled with the analysis presented here will help guide them to make the best decision

with respect to the circumstances.

Due to the nature of this model, it does not measure the intangible aspects
associated with the effectiveness of NSFS. Although we purport to measure reliability,
flexibility, and lethality, those measurements are a function of the definitions presented in
this thesis and cannot replace reality. They simply provide insight into what

measurements of those topics might actually be.

68

V. CONCLUSIONS
A. RESULTS

The results of this thesis indicate that NSFS can be effective in providing support
for Army units at brigade level in alittoral campaign for the IBCT and the FCS scenarios.
The measures of effectiveness used for this analysis were fire mission times, available
firing platforms, percentage of missions fired, percentage of successful missions based on
all arriving targets, percentage of successful missions based on missions fired, number of
rounds that caused collateral damage, and the percentage of the area of operations
covered. COA’s were developed consisting of different artillery task organizations of
Army and Navy artillery for each scenario. Using the Fire Support Smulation Tool

developed for this thesis, each COA was simulated 50 times to get values for the MOE's.

Using multi-attribute utility theory each MOE for each COA replication within a
particular scenario was given a utility rating based on the actual value of that MOE/COA
combination compared with other MOE/COA combinations in the scenario. The final
utility for a specific COA replication in a scenario was determined by weighting and then
combining the utility of the MOE's for each COA replication in a particular scenario.
Single factor ANOVA and Tukey’'s procedure for multiple comparisons were used to

determine whether there was a statistically significant difference among the COA'’s.

When using equa weights for al of the MOE's, the best COA for both scenarios
was the COA that consisted of a mixture of Army and Navy artillery. Based entirely on
the weapon systems specifications used, this result indicates that there could be a scenario
for the IBCT and FCS where NSFS adds more utility and is effective as a fire support

weapon in alittoral campaign.

69

B. ISSUES

This analysis revealed that there is merit to the use of NSFS in place of Army
artillery for reinforcing fires in the littorals. However, nothing can truly replace the
feeling of ownership that a unit commander feels by having supporting elements on the
ground with him and within arm’s reach. Most if not al leaders feel very comfortable
with the capabilities and limitations of those assets they are most familiar with. Joint
training exercises between Naval and Army units are extremely rare. Lack of that joint
training and persona prejudices build distrust, which may prove an insurmountable

obstacle if not corrected.

Nothing speaks more highly of dedication to success of a mission than having a
persona stake in the outcome of the mission. Most soldiers stake their lives on the
successful completion of their missions. [If assets providing support in the form of naval

gunfire do not have that same stake, Army commanders feel uncomfortable.

The results of this analysis assume the relatively efficient use of available assets
to accomplish all fire missions. If assets such as naval gunfire can be called away at a
moment’ s notice, their reliability to the commander on the ground becomes suspect. This
leads to inefficient use of the asset. Basically, the Army commander will try to get as
much as he can out of that asset before it gets taken away. This type of misuse will

almost certainly create prejudice and mistrust among the Navy towards the Army.

These issues must be addressed before naval gunfire can be integrated seamlessy
into Army operations now or in the future. Digital synchronization, future technologies,

and memorandums of agreement will help, but alone they will not suffice. Soldiers know

70

that the soldier across the street will be ready because they see him and her working and
training every day. These issues of mistrust must be worked out on the ground,
commander to commander, sergeant to petty officer, and soldier to sailor.

C. RECOMMENDATIONSFOR FURTHER RESEARCH

Research on the effectiveness of NSFS to Army commanders has provided one
perspective and one answer to an extremely complex and ever-changing problem. As
with much significant research, nmore questions than answers resulted, which is the basis
for the following recommendations for further study of this problem.

1. Further Development of the FSST

For the purposes of this thesis the FSST was adequate. Further development
could provide users with a higher fidelity and a more versatile tool. The current version
of the FSST does not have a graphical user interface (GUI) and is limited in the
distributions that can be used to determine the locations of arriving enemy targets. It also
does not account for different times of flight for different weapon systems and different
ranges, and accounts for only one type of ammunition. These are just a few areas that
could use improvement, and will be discussed in further detail below

@ Graphical User Interface and Target Distribution Model

@ GUI. A GUI could be developed to ssimplify the
development of scenarios. The GUI could prompt the user for all needed information and
could have built in error checking mechanisms to prevent the user from entering bad data.
This type of enhancement would make the Java underpinnings of the simulation
trangparent to the user and would make the tool more likely to be used for

experimentation and analysis.

71

(2) Develop Unique Distributions to Be Used With the GUI

- Bivariate Triangular. The current version of the FSST uses two parameter
distributions for the breadth of the battlefield and one parameter distributions for the
depth of the battlefield. This is due to the fact that the FSST was designed for a fairly
specific purpose. One of the strengths of Java is that it is alows for easily extending the
capabilities and flexibility of any program. Making the FSST generic enough to accept a
broader set of possible distributions for the depth and breadth of the battlefield would be
relatively ssmple and would give the user a much more powerful tool. To alow for the
analysis of future scenarios that might include a strongpoint-type position deep in enemy
territory, the development of distributions that make the probability of excountering
enemy targets at edges of the FLOT higher than in the center would be appropriate (see

Figure 4.1).

Figure 4.1: Unique Dua Triangular Distribution

Using this distribution bivariately would create a distribution that could model a
strongpoint-type defense. The objective is to create a distribution that looks like an
inverted, four-sided pyramid (Figure 4.2). The bivariate version of the dual triangular
distribution would probably look more like a tarp suspended by all four corners and

pulled taut in the center that sags somewhat in the center of each side.

72

Figure 4.2: Inverted Pyramid

Shown below in Figure 4.3 is what an example of this type of bivariate
distribution might look like, where the probability of encountering the enemy is highest
on the perimeter and lowest at the center. Here we depict an Army unit in a desert-type
environment near the coast surrounded by enemy units. The unit has organic fire support,
but cannot effectively cover his perimeter with them. NSFS can provide the extra fire

support needed to cover the entire area of operations.

73

Arriving targets distributed according
to dual triangular distribution.

Arriving
targets
distributed
according
to dua
triangular
distribution

v

Figure 4.3. Picture of Dendty of Targets on the Battlefield. Dark indicates higher density

This distribution does not have to be symmetrical. It is conceivable that a unit
could be surrounded by enemy units with different characteristics on each side. In this
case, these enemy forces might attack the surrounded unit at different rates on each side.
By adjusting the parameters of the bivariate dual triangular distribution, the user could
model aggressive units to the left and front attacking in conjunction with less aggressive

units to the right and rear. An example of what this might look like is shown below in

Figure 4.4.

74

y
Figure 4.4: Un-symmetrical Bivariate Dua Triangular Distribution

By incorporating unique distributions such as this and others, we can more
realistically model a broader array of scenarios. These distributions should be tied into
the GUI described earlier to give the user a smple method of picking distributions and

their parameters.

- Polar Coordinates. Another option for developing a model that depicts a
strongpoint defense would be to model the arrival of targets using polar coordinates. In
this case the two variables of angle and radius could generate a bivariate distribution that
looks like a bowl or a ripple in a pond (see Figure 4.5, radiadly fleeing target). The
randomly chosen polar coordionates that follow the particular bivariate distribution could
then be converted to Cartesian coordinates for the simulation. An example of a very
simple distribution would be one in which the angle was uniform between 0 and 6.28
radians, and the radius or range were chosen based on aright triangular distribution. This

distribution would look like an inverted cone.
75

0. am .

0.008. 0.008

0.006 0.006

0.004 4

000z .

an

Figure 4.5: Sample polar coordinate bivariate distri butions (From: Eagle).

30

(b) Survivability

The current version of the FSST discounts the effects of survivability, as
fire support systems are not attrited in the model. By accurately accounting for dtrition
from counter-battery fire, mines, enemy actions, and mechanical failure, the FSST could
be an improved model of the battlefield. This enhancement would enable the user to
measure, compare, and analyze the effects of more survivable systems using arelatively
simpletool. A possible thesistopic would be an analysis of the effectiveness of different
howitzer systems for the IBCT and FCS-OF.

(© Expand the Types of Ammunition the Simulation Models

Expanding the family of munitions that the simulation accounts for would
make the FSST much more complex than it already is, and could make scenario
development more time consuming (if the user wanted to use more than one type of
ammunition). The benefits of this would be that it would allow comparisons between
different basic loads of munitions to optimize success on the battlefield. Thiswould also
allow for more realistic comparisons among artillery systems by accounting for the
availability of different munitions for different systems. Overal, this improvement

would make the smulation more flexible and redlistic.

76

(d) Modify Modeling of Time of Flight

Time of flight is calculated based on the average velocity of projectiles
regardless of range or delivery system. To make the simulation more accurate, another
method of calculating time of flight should be devised. One possible solution would be
to take tabularized firing tables for Army and Navy artillery to get the times of flight and
plot those times based on range for different weapon systems and use regression to
develop a simple formula to compute times of flight for individua platforms.

2. Fire Support Optimization Based on Threat

Mission, enemy, time, terrain, and training make all military campaigns unique.
Based on these factors, the force structure for a military campaign is determined by
leaders who generally use intelligence estimates and personal experience as their guide.
Using the FSST, a student could design an experiment to determine the optima mix of
Naval and Army artillery for aparticular campaign. This analysis would provide the

decisionr maker a quantitative basis to aid in the decision making process.

This problem can be examined using several different techniques. One technique
would be to design a multi-factorial experimert and use FSST to determine the optimal
strategy by using regression or ANOVA techniques to map response surfaces. Another
technique would be to use linear and nonlinear optimization techniques to determine the
optimal solution. Certainly other techniques exist, yet these are two smple well-
developed procedures that are available.

3. Cost Analysis of Army Fire Support Systems

Effectiveness of NSFS in this analysis is based entirely on utility to the Army

brigade commander. The brigade commander is not concerned with cost because it does

77

not affect him or his operation directly — generaly, if the assets are available, they will be
made available to him. However, when developing the Nation’s future force, cost is an

enormous factor and cannot be discounted.

An excursion from this thesis would be to optimize future fire support systems
based on cost. By using a set of approved Army scenarios for the future, the student
could design an experiment to determine the utility of different combinations of fire
support systems throughout the Army and then optimize that force with respect to utility
and cost. Put in more simplistic terms, this analysis would be a bang for the buck

analysis of Army fire support.

Another possible excursion would be to analyze and optimize utility and cost for a
specific scenario that took into account cost. For example, the fire support for a purely
littoral Army operation could be optimized for utility given a limited budget. By
experimenting with different feasible combinations of NSFS and Army artillery, the
student could optimize the assets provided for that operation for a specific budget.

D. SUMMARY AND CONCLUSIONS

The effectiveness of Naval Surface Fire Support is difficult to define and even
harder to measure. By using \alue systems design to define effectiveness of NSFSin a
hierarchical manner using an objective tree, NSFS effectiveness can be defined
quantitatively by the lowest sub-objectives on the objective tree. Those lowest level,
guantitative sub-objectives are the MOE’s that were used to measure the effectiveness of
NSFS. Figure 4.6 shows the condensed objective tree that depicts the main objective, the
first level objectives, and the lowest level objectives or MOE's (notice that all other

intermediate level objectives have been removed).

78

To maximize the effectiveness of lethal indirect fires
available to Army Objective Force commanders
at Brigade level and below in locations within
reach of Navy ship fires.

T

Maximize Maximize Maximize
Flexibility Reliability Lethality

Minimize the Number Maximize the Percentage Maximize Percentage Maximize Percentage Maximize Average Number Maximize Percentage of
of Rounds that Cause of the Area of Operations of Missions Fired of Successful Targets Engaged of Available Firing Platforms Successful Missions
Collateral Damage with Indirect Fire Coverage

Minimize Average
Mission Time

Figure 4.6: Condensed Objective Tree

By combining the strengths of Army artillery and naval gunfire, an Army Brigade
commander can organize a fire support team that is better able to support his missions.
The task organization of assets used is strongly dependent on the weighting scheme the
commander adopts for the MOE's presented earlier. Although there is evidence
supporting the use of NSFS in a support of Army operations in the littorals, there are a
myriad of issues such as training, mistrust, and synchronization that must be addressed to
make these types of joint campaigns successful. In the final anaysis, it was determine
that there is strong quantitative and analytical evidence to support the effectiveness of

NSFS to an Army Brigade commander engaged in a littoral campaign.

79

THISPAGE INTENTIONALLY LEFT BLANK

80

APPENDIX 1: IBCT RAW DATA

FMT NAS PF TPS PS CD CA COA
10.1155 1.3809 0.7412 0.6991 0.9455 0 0.8462 1A
10.0987 1.3208 0.7529 0.7224 0.9594 0 0.8462 1A
13.5736 1.2861 0.7576 0.6981 0.9221 0 0.8462 1A
10.6466 1.2771 0.8047 0.7671 0.9532 0 0.8462 1A
8.7089 1.3835 0.7553 0.7059 0.9346 0 0.8462 1A
9.2294 1.3523 0.7553 0.7088 0.9429 0 0.8462 1A
8.8930 1.5523 0.7247 0.6746 0.9369 0 0.8462 1A
13.1867 1.2501 0.7647 0.7268 0.9533 0 0.8462 1A
10.1874 1.4308 0.7365 0.6888 0.9385 0 0.8462 1A
10.8690 1.2736 0.7576 0.7275 0.9624 0 0.8462 1A
8.7823 1.4471 0.7388 0.7028 0.9521 0 0.8462 1A
12.8423 1.2563 0.7882 0.7177 0.9146 0 0.8462 1A
11.2220 1.3108 0.7459 0.7014 0.9427 0 0.8462 1A
10.1027 1.2453 0.7529 0.7092 0.9434 0 0.8462 1A
12.7777 1.2948 0.7647 0.7187 0.9412 0 0.8462 1A
13.5144 1.2354 0.7529 0.7082 0.9406 0 0.8462 1A
10.8664 1.3880 0.7788 0.7352 0.9453 0 0.8462 1A
10.2689 1.4459 0.7459 0.6894 0.9243 0 0.8462 1A
10.3266 1.4044 0.7341 0.6934 0.9453 0 0.8462 1A
9.7868 1.4779 0.7412 0.6862 0.9243 0 0.8462 1A
11.0182 1.2850 0.7435 0.7038 0.9489 0 0.8462 1A
13.4077 1.2219 0.7694 0.7262 0.9472 0 0.8462 1A
12.7512 1.1467 0.7929 0.7458 0.9453 0 0.8462 1A
9.8451 1.3921 0.7553 0.7254 0.9596 0 0.8462 1A
9.5355 1.4259 0.7553 0.7092 0.9404 0 0.8462 1A
12.0433 1.2273 0.7459 0.7075 0.9494 0 0.8462 1A
11.7216 1.3401 0.7294 0.6802 0.9375 0 0.8462 1A
13.1663 1.1875 0.7412 0.6995 0.9430 0 0.8462 1A
14.5717 1.2217 0.7459 0.6879 0.9238 0 0.8462 1A
10.1880 1.3251 0.7576 0.7019 0.9329 0 0.8462 1A
12.1267 1.2426 0.7318 0.6816 0.9323 0 0.8462 1A
16.2287 1.2080 0.7882 0.7447 0.9459 0 0.8462 1A
11.9053 1.2470 0.7506 0.6865 0.9175 0 0.8462 1A
10.4061 1.2501 0.7600 0.7279 0.9621 0 0.8462 1A
9.0901 1.2966 0.7388 0.6730 0.9132 0 0.8462 1A
10.6971 1.3245 0.7600 0.7170 0.9441 0 0.8462 1A
10.0657 1.3807 0.7482 0.6896 0.9238 0 0.8462 1A
11.6537 1.3789 0.7294 0.6958 0.9547 0 0.8462 1A
10.1224 1.2886 0.7529 0.7234 0.9623 0 0.8462 1A
11.2466 1.3654 0.7459 0.7129 0.9558 0 0.8462 1A
10.2101 1.2596 0.7576 0.7139 0.9438 0 0.8462 1A
10.4852 1.4571 0.7459 0.7014 0.9427 0 0.8462 1A
12.0845 1.3369 0.7176 0.6872 0.9603 0 0.8462 1A
13.6397 1.2590 0.7576 0.6998 0.9250 0 0.8462 1A
12.2961 1.2967 0.7482 0.6809 0.9114 0 0.8462 1A

81

FMT NAS PF TPS PS CD CA COA
10.1355 1.3100 0.7365 0.6919 0.9419 0 0.8462 1A
9.9158 1.2275 0.7812 0.7494 0.9632 0 0.8462 1A
10.5636 1.3350 0.7553 0.6833 0.9082 0 0.8462 1A
11.2183 1.2345 0.7529 0.7176 0.9531 0 0.8462 1A
9.0979 1.3846 0.7506 0.7085 0.9462 0 0.8462 1A
52.9676 0.4146 0.9976 0.2864 0.2872 2 1 1B
80.2095 0.4394 0.9976 0.3554 0.3564 1 1 1B
78.4474 0.4263 0.9976 0.3102 0.311 4 1 1B
62.8528 0.5221 0.9976 0.3264 0.3273 5 1 1B
56.4942 0.4155 0.9976 0.3609 0.3618 4 1 1B
59.5435 0.4792 0.9976 0.3316 0.3324 3 1 1B
45.6509 0.5203 0.9388 0.2576 0.2743 2 1 1B
138.2842 0.4668 0.9976 0.3047 0.3056 4 1 1B
56.1804 0.4494 0.9976 0.3275 0.3283 2 1 1B
60.6415 0.4793 0.9976 0.297 0.2978 1 1 1B
57.9176 0.5018 0.9976 0.3248 0.3256 7 1 1B
87.6755 0.4578 0.9976 0.3046 0.3054 5 1 1B
80.3952 0.3371 0.9976 0.3386 0.3395 5 1 1B
83.4727 0.4538 0.9976 0.3736 0.3746 2 1 1B
58.8176 0.4889 0.9976 0.3342 0.3351 3 1 1B
87.2914 0.5395 0.9976 0.3295 0.3305 3 1 1B
58.3692 0.5467 0.9976 0.313 0.3138 1 1 1B
61.9579 0.6099 0.9976 0.3272 0.3281 2 1 1B
63.1433 0.5359 0.9976 0.3298 0.3307 1 1 1B
71.5462 0.5729 0.9976 0.3036 0.3043 1 1 1B
79.1065 0.4308 0.9976 0.3397 0.3407 3 1 1B
84.808 0.4637 0.9976 0.3111 0.312 0 1 1B
96.7954 0.4777 0.9976 0.32 0.3209 4 1 1B
71.5192 0.5009 0.9765 0.2974 0.3053 1 1 1B
85.5592 0.5556 0.9976 0.3246 0.3255 5 1 1B
82.6135 0.5347 0.9976 0.2693 0.2701 2 1 1B
71.8495 0.3883 0.9976 0.3054 0.3062 5 1 1B
110.0748 0.4061 0.9976 0.3246 0.3256 7 1 1B
84.9032 0.3738 0.9976 0.2964 0.2972 3 1 1B
62.1142 0.4921 0.9976 0.2834 0.2842 3 1 1B
87.7569 0.3322 0.9976 0.2912 0.292 4 1 1B
88.1566 0.3902 0.9976 0.3105 0.3113 2 1 1B
116.2587 0.5537 0.9976 0.3256 0.3265 2 1 1B
62.5021 0.4406 0.9976 0.2784 0.2791 5 1 1B
66.3734 0.355 0.9976 0.2984 0.2992 5 1 1B
80.6586 0.4661 0.9976 0.3411 0.342 0 1 1B
52.9527 0.3854 0.9788 0.33 0.3376 7 1 1B
85.2501 0.5998 0.9976 0.3667 0.3677 3 1 1B
76.4893 0.4631 0.9976 0.2693 0.2701 3 1 1B
71.104 0.3795 0.9976 0.2982 0.299 5 1 1B
90.275 0.4469 0.9976 0.3052 0.306 1 1 1B
58.6385 0.5545 0.9976 0.3436 0.3445 4 1 1B

82

FMT NAS PF TPS PS CD CA COA
89.5289 0.3683 0.9976 0.3467 0.3476 2 1 1B
74.586 0.4158 0.9976 0.3244 0.3253 3 1 1B
86.7711 0.4184 0.9976 0.3484 0.3493 5 1 1B
80.6077 0.429 0.9976 0.2479 0.2486 2 1 1B
72.9093 0.5738 0.9976 0.3103 0.3112 4 1 1B
69.0219 0.5004 0.9976 0.2857 0.2865 6 1 1B
82.2343 0.4187 0.9976 0.3433 0.3443 6 1 1B
56.8961 0.4465 0.9976 0.3051 0.3059 2 1 1B
6.9691 4.3593 0.7412 0.6981 0.9427 0 0.8534 1C

7.492 4.3269 0.7529 0.7106 0.9438 0 0.8534 1C
8.3287 4.2787 0.7576 0.7335 0.9688 0 0.8534 1C

7.73 4.2723 0.8047 0.76 0.9444 0 0.8534 1C
7.6254 4.3809 0.7553 0.7241 0.9594 0 0.8534 1C
7.0711 4.3317 0.7553 0.7028 0.9312 0 0.8534 1C
7.0417 4.5191 0.7247 0.6824 0.9416 0 0.8534 1C
7.5678 4.2315 0.7694 0.7417 0.966 0 0.8534 1C
6.9281 4.4219 0.7365 0.7075 0.9615 0 0.8534 1C
7.1517 4.2804 0.7576 0.6974 0.9219 0 0.8534 1C
6.5345 4.4211 0.7435 0.6769 0.9111 0 0.8534 1C
7.6099 4.2192 0.7882 0.747 0.9489 0 0.8534 1C
7.3749 4.2793 0.7482 0.7224 0.9654 0 0.8534 1C

7.692 4.2146 0.7529 0.7059 0.9375 0 0.8534 1C
8.5518 4.3076 0.7647 0.7176 0.9385 0 0.8534 1C
7.9956 4.2436 0.7553 0.7153 0.947 0 0.8534 1C
7.7949 4.3674 0.7788 0.7365 0.9456 0 0.8534 1C
7.0248 4.4655 0.7459 0.7082 0.9495 0 0.8534 1C

6.72 4.3994 0.7341 0.7019 0.9553 0 0.8534 1C
7.5525 4.4536 0.7435 0.7166 0.9623 0 0.8534 1C
7.1184 4.2987 0.7435 0.7028 0.946 0 0.8534 1C
7.2369 4.212 0.7694 0.7264 0.9448 0 0.8534 1C
7.7485 4.1231 0.7929 0.7529 0.9496 0 0.8534 1C
7.0521 4.3496 0.7553 0.6901 0.913 0 0.8534 1C
6.8131 4.4426 0.7553 0.7123 0.9438 0 0.8534 1C
7.6545 4.2388 0.7459 0.695 0.9333 0 0.8534 1C
7.1541 4.2988 0.7294 0.6912 0.951 0 0.8534 1C
7.5723 4.138 0.7435 0.6768 0.9088 0 0.8534 1C
7.4578 4.2239 0.7482 0.7019 0.9373 0 0.8534 1C

8.022 4.28 0.7576 0.7275 0.9624 0 0.8534 1C
7.1484 4.2408 0.7318 0.6714 0.9167 0 0.8534 1C
8.0412 4.1846 0.7882 0.7358 0.9341 0 0.8534 1C
7.0445 4.2216 0.7529 0.7234 0.9623 0 0.8534 1C

7.665 4.2701 0.76 0.7153 0.9462 0 0.8534 1C
6.5345 4.2942 0.7412 0.6856 0.9265 0 0.8534 1C
6.9408 4.3248 0.76 0.7153 0.9412 0 0.8534 1C

7.61 4.3651 0.7482 0.7116 0.9525 0 0.8534 1C
7.3674 4.3905 0.7294 0.6792 0.932 0 0.8534 1C
6.9693 4.3318 0.7529 0.7075 0.9404 0 0.8534 1C

83

FMT NAS PF TPS PS CD CA COA
7.5255 4.3723 0.7459 0.6948 0.9308 0 0.8534 1C
7.0469 4.2602 0.7576 0.7139 0.9438 0 0.8534 1C
6.7356 4.4528 0.7459 0.7055 0.9489 0 0.8534 1C
7.1947 4.3431 0.7176 0.6738 0.9406 0 0.8534 1C
6.7268 4.2482 0.7576 0.7106 0.9379 0 0.8534 1C
7.3305 4.2973 0.7506 0.6792 0.9057 0 0.8534 1C
7.1667 4.2633 0.7365 0.6918 0.9393 0 0.8534 1C
7.6553 4.2047 0.7812 0.7459 0.9548 0 0.8534 1C
6.7821 4.3192 0.76 0.7167 0.9465 0 0.8534 1C
8.5899 4.227 0.7553 0.716 0.9472 0 0.8534 1C
7.2642 4.3526 0.7506 0.7153 0.953 0 0.8534 1C
9.1293 3.5816 0.9976 0.7316 0.7333 1 1.0000 1D
10.4000 3.5670 0.9976 0.7500 0.7518 2 1.0000 1D
11.5310 3.5317 0.9976 0.7624 0.7642 6 1.0000 1D
10.8170 3.7213 0.9976 0.8147 0.8167 2 1.0000 1D
9.1434 3.6614 0.9976 0.7464 0.7482 1 1.0000 1D
10.1038 3.5877 0.9976 0.7405 0.7422 3 1.0000 1D
9.1750 3.7997 0.9976 0.7698 0.7716 1 1.0000 1D
12.3588 3.5160 0.9976 0.7512 0.7530 4 1.0000 1D
10.2462 3.6566 0.9976 0.7357 0.7375 3 1.0000 1D
9.6743 3.5250 0.9976 0.7630 0.7648 5 1.0000 1D
9.1120 3.6871 0.9976 0.7512 0.7529 2 1.0000 1D
12.0336 3.6020 0.9976 0.7780 0.7799 0 1.0000 1D
10.1343 3.5026 0.9976 0.7303 0.7321 1 1.0000 1D
11.7435 3.4305 0.9976 0.7387 0.7405 2 1.0000 1D
9.6917 3.6180 0.9976 0.7712 0.7730 1 1.0000 1D
11.4213 3.4371 0.9976 0.7547 0.7565 1 1.0000 1D
9.4550 3.7445 0.9976 0.7565 0.7583 0 1.0000 1D
9.6525 3.7297 0.9976 0.7547 0.7565 1 1.0000 1D
9.6765 3.6017 0.9976 0.7406 0.7423 2 1.0000 1D
8.9047 3.7459 0.9976 0.7394 0.7412 1 1.0000 1D
11.9245 3.5010 0.9976 0.7245 0.7262 3 1.0000 1D
10.7633 3.4918 0.9976 0.7464 0.7482 2 1.0000 1D
14.1308 3.3938 0.9976 0.7701 0.7720 0 1.0000 1D
9.7204 3.6753 0.9976 0.7482 0.7500 1 1.0000 1D
10.1042 3.7521 0.9976 0.7730 0.7749 2 1.0000 1D
11.4027 3.4233 0.9976 0.7530 0.7548 2 1.0000 1D
10.7875 3.4566 0.9976 0.7488 0.7506 2 1.0000 1D
12.6567 3.2913 0.9976 0.7571 0.7589 0 1.0000 1D
10.2746 3.3909 0.9976 0.7069 0.7085 3 1.0000 1D
9.6899 3.5797 0.9976 0.7305 0.7322 2 1.0000 1D
10.7698 3.3789 0.9976 0.7208 0.7225 4 1.0000 1D
13.0605 3.5320 0.9976 0.7589 0.7607 2 1.0000 1D
9.9304 3.4435 0.9976 0.7464 0.7482 1 1.0000 1D
10.5579 3.4686 0.9976 0.7373 0.7391 0 1.0000 1D
9.2348 3.4756 0.9976 0.7310 0.7327 1 1.0000 1D
9.9000 3.5798 0.9976 0.7352 0.7370 3 1.0000 1D

FMT NAS PF TPS PS CD CA COA
9.4779 3.6320 0.9976 0.7423 0.7441 1 1.0000 1D
10.3573 3.5923 0.9976 0.7109 0.7126 0 1.0000 1D
9.7622 3.5653 0.9976 0.7441 0.7458 1 1.0000 1D
10.6510 3.5667 0.9976 0.7647 0.7665 4 1.0000 1D
10.4308 3.4840 0.9976 0.7452 0.7470 2 1.0000 1D
9.0162 3.7584 0.9976 0.7464 0.7482 3 1.0000 1D
11.6548 3.4457 0.9976 0.7314 0.7332 0 1.0000 1D
9.4646 3.5260 0.9976 0.7648 0.7667 2 1.0000 1D
9.2086 3.5424 0.9976 0.7167 0.7184 1 1.0000 1D
9.6773 3.4702 0.9976 0.7275 0.7292 1 1.0000 1D
10.2880 3.5374 0.9976 0.7705 0.7724 1 1.0000 1D
10.3546 3.5772 0.9976 0.7572 0.7590 1 1.0000 1D
9.7538 3.4982 0.9976 0.7441 0.7458 1 1.0000 1D
9.0496 3.6365 0.9976 0.7294 0.7311 4 1.0000 1D

85

THISPAGE INTENTIONALLY LEFT BLANK

86

APPENDIX 2: FCSRAW DATA

FMT NAS PF TPS PS CD CA COA
3.4232 2.1049 0.8188 0.5165 0.6311 0 0.7414 2A
3.0793 2.1559 0.7718 0.5506 0.7134 0 0.7414 2A
3.4291 2.1111 0.7929 0.5399 0.6805 0 0.7414 2A
3.3145 2.1582 0.8024 0.5446 0.6784 0 0.7414 2A
3.1468 2.1416 0.8118 0.5529 0.6812 0 0.7414 2A
3.3493 2.1215 0.8071 0.5788 0.7172 0 0.7414 2A
3.0635 2.246 0.7576 0.533 0.704 0 0.7414 2A
3.3287 2.0942 0.7976 0.5504 0.6891 0 0.7414 2A
3.0974 2.1819 0.7812 0.564 0.7234 0 0.7414 2A

3.196 2.1166 0.7859 0.5495 0.6997 0 0.7414 2A
3.2167 2.2019 0.7718 0.5269 0.6818 0 0.7414 2A
3.3352 2.0903 0.8329 0.6203 0.745 0 0.7414 2A

3.105 2.099 0.8 0.5597 0.6988 0 0.7414 2A
3.3594 2.0035 0.8541 0.5761 0.674 0 0.7414 2A
3.3869 2.1245 0.7976 0.5318 0.6667 0 0.7414 2A
3.2715 2.0469 0.8376 0.5869 0.7003 0 0.7414 2A
3.1111 2.1997 0.7835 0.5446 0.6946 0 0.7414 2A
3.3444 2.1758 0.8047 0.554 0.688 0 0.7414 2A
3.2883 2.2052 0.7435 0.5446 0.7319 0 0.7414 2A
3.2754 2.1917 0.7953 0.5105 0.6412 0 0.7414 2A
3.3197 2.1496 0.7553 0.5647 0.7477 0 0.7414 2A
3.3659 2.1548 0.7506 0.561 0.7469 0 0.7414 2A
3.1913 2.1023 0.7671 0.5469 0.7125 0 0.7414 2A
3.1006 2.1643 0.7859 0.5493 0.6985 0 0.7414 2A
3.0779 2.2286 0.7435 0.4801 0.6447 0 0.7414 2A
3.5248 2.0871 0.7882 0.5647 0.7164 0 0.7414 2A
3.2471 2.1238 0.7718 0.5248 0.681 0 0.7414 2A
3.9056 2.0411 0.7788 0.5738 0.7357 0 0.7414 2A

3.35 2.0725 0.7882 0.5634 0.7143 0 0.7414 2A
3.2314 2.125 0.7882 0.5236 0.6647 0 0.7414 2A
3.4649 2.0416 0.8118 0.5493 0.6763 0 0.7414 2A
3.4069 2.0763 0.8235 0.5812 0.7057 0 0.7414 2A
3.1458 2.1542 0.7365 0.5236 0.7115 0 0.7414 2A
3.2994 2.0758 0.8094 0.545 0.6745 0 0.7414 2A
3.1009 2.1 0.7929 0.5647 0.7122 0 0.7414 2A
3.1138 2.1408 0.7812 0.5164 0.6607 0 0.7414 2A
3.2659 2.1484 0.7953 0.5529 0.6953 0 0.7414 2A
3.2595 2.1252 0.8094 0.5399 0.6667 0 0.7414 2A
3.2538 2.1516 0.7718 0.56 0.7256 0 0.7414 2A

3.312 2.1279 0.8165 0.5929 0.7262 0 0.7414 2A
3.6419 2.1242 0.7694 0.5412 0.7034 0 0.7414 2A
3.2606 2.1896 0.7835 0.5401 0.6898 0 0.7414 2A
3.2818 2.1012 0.7882 0.5461 0.6937 0 0.7414 2A
3.3709 2.0947 0.8047 0.5849 0.7273 0 0.7414 2A
3.4375 2.1321 0.7859 0.5236 0.6667 0 0.7414 2A

87

FMT NAS PF TPS PS CD CA COA
3.2625 2.0979 0.7976 0.5976 0.7493 0 0.7414 2A
3.182 2.1239 0.7765 0.5236 0.6748 0 0.7414 2A
3.2852 2.1452 0.7765 0.5153 0.6636 0 0.7414 2A
3.3879 2.0808 0.8024 0.5718 0.7126 0 0.7414 2A
3.1565 2.159 0.7929 0.5376 0.6775 0 0.7414 2A
9.6613 1.2691 0.9976 0.2048 0.2053 4 1 2B
14.5224 1.215 0.9976 0.184 0.1844 6 1 2B
11.7831 1.1853 0.9976 0.1745 0.1749 6 1 2B
9.4254 1.3239 0.9976 0.2424 0.2429 4 1 2B
8.6008 1.3059 0.9976 0.208 0.2085 1 1 2B
10.2661 1.245 0.9976 0.228 0.2286 5 1 2B
9.1708 1.3808 0.9976 0.1943 0.1948 7 1 2B
11.9826 1.1678 0.9976 0.1844 0.1848 5 1 2B
8.544 1.3323 0.9976 0.1885 0.189 2 1 2B
9.1057 1.1754 0.9976 0.2043 0.2048 5 1 2B
8.5368 1.314 0.9976 0.1718 0.1722 6 1 2B
11.009 1.1913 0.9976 0.2214 0.222 1 1 2B
10.8566 1.1847 0.9976 0.1823 0.1827 3 1 2B
9.7578 1.1248 0.9976 0.2128 0.2133 3 1 2B
10.2408 1.2643 0.9976 0.1734 0.1738 6 1 2B
9.7044 1.1433 0.9976 0.1671 0.1675 4 1 2B
7.8368 1.3754 0.9976 0.2204 0.2209 4 1 2B
7.7933 1.3604 0.9976 0.1887 0.1891 4 1 2B
9.0284 1.2976 0.9976 0.1887 0.1891 3 1 2B
8.0753 1.35 0.9976 0.1925 0.1929 3 1 2B
9.801 1.1954 0.9976 0.2014 0.2019 3 1 2B
12.6654 1.1671 0.9976 0.1863 0.1868 3 1 2B
10.907 1.1154 0.9976 0.1679 0.1683 4 1 2B
10.0505 1.2916 0.9976 0.2235 0.2241 3 1 2B
8.0572 1.3414 0.9976 0.1801 0.1805 5 1 2B
12.1979 1.1457 0.9976 0.2134 0.2139 3 1 2B
9.0962 1.1588 0.9976 0.1818 0.1823 4 1 2B
12.6317 1.0305 0.9976 0.2047 0.2052 2 1 2B
10.8304 1.1223 0.9976 0.2304 0.231 5 1 2B
9.0401 1.2369 0.9976 0.1934 0.1939 3 1 2B
13.6755 1.1075 0.9976 0.1816 0.182 4 1 2B
11.6641 1.1749 0.9976 0.191 0.1915 3 1 2B
10.3065 1.1316 0.9976 0.1967 0.1971 2 1 2B
10.8157 1.2093 0.9976 0.1699 0.1703 5 1 2B
11.8751 1.1609 0.9976 0.1971 0.1976 2 1 2B
9.6545 1.2754 0.9976 0.1698 0.1702 7 1 2B
8.4899 1.2832 0.9976 0.1991 0.1995 2 1 2B
9.7525 1.2409 0.9976 0.227 0.2275 4 1 2B
9.0193 1.2372 0.9976 0.2156 0.2162 1 1 2B
10.2839 1.2625 0.9976 0.2306 0.2311 2 1 2B
10.512 1.1369 0.9976 0.181 0.1814 2 1 2B
10.6253 1.3631 0.9976 0.1855 0.186 5 1 2B

88

FMT NAS PF TPS PS CD CA COA
9.8558 1.1949 0.9976 0.1548 0.1551 4 1 2B
11.0848 1.1786 0.9976 0.1726 0.173 5 1 2B
11.8934 1.1896 0.9976 0.2241 0.2246 2 1 2B
10.255 1.1698 0.9976 0.2019 0.2024 3 1 2B
8.4128 1.2181 0.9976 0.1779 0.1783 1 1 2B

10.94 1.2577 0.9976 0.2225 0.223 2 1 2B
10.9993 1.1629 0.9976 0.2067 0.2071 5 1 2B

8.224 1.3251 0.9976 0.169 0.1695 4 1 2B
2.9554 5.1027 0.8212 0.5282 0.6429 0 0.7478 2C
2.8873 5.1343 0.7835 0.5459 0.6967 0 0.7478 2C
2.9975 5.1059 0.8 0.5211 0.651 0 0.7478 2C

2.96 5.1383 0.8141 0.5728 0.7032 0 0.7478 2C

2.838 5.126 0.8259 0.5141 0.6222 0 0.7478 2C
2.9695 5.1028 0.8235 0.5873 0.7135 0 0.7478 2C
2.8613 5.2233 0.7718 0.4929 0.6391 0 0.7478 2C
2.9569 5.077 0.8165 0.5469 0.6695 0 0.7478 2C
2.9513 5.1727 0.7859 0.5637 0.7177 0 0.7478 2C
2.9714 5.098 0.8 0.5354 0.6696 0 0.7478 2C
2.9434 5.1773 0.7859 0.5152 0.6548 0 0.7478 2C
3.0847 5.0751 0.84 0.6014 0.7163 0 0.7478 2C
2.8595 5.0662 0.8188 0.5738 0.7 0 0.7478 2C
2.9827 4.999 0.8588 0.541 0.6294 0 0.7478 2C
3.0386 5.104 0.8165 0.5377 0.659 0 0.7478 2C
3.0399 5.0367 0.8447 0.6009 0.7111 0 0.7478 2C
2.8708 5.19 0.7929 0.5822 0.7337 0 0.7478 2C
3.0122 5.1479 0.8259 0.5352 0.6477 0 0.7478 2C
2.9151 5.1919 0.7506 0.5 0.6656 0 0.7478 2C
2.9323 5.1839 0.8071 0.5423 0.6715 0 0.7478 2C
3.0615 5.1251 0.7741 0.5283 0.6829 0 0.7478 2C
2.8289 5.143 0.76 0.5446 0.716 0 0.7478 2C
2.9554 5.0656 0.7882 0.5728 0.7262 0 0.7478 2C
2.9036 5.1421 0.8118 0.5563 0.685 0 0.7478 2C
3.0008 5.2112 0.7553 0.5199 0.6873 0 0.7478 2C

3.138 5.0581 0.8071 0.5694 0.7055 0 0.7478 2C
2.9341 5.1025 0.7882 0.5296 0.6727 0 0.7478 2C
3.0917 5.0228 0.7953 0.541 0.6794 0 0.7478 2C
2.9684 5.0654 0.7929 0.5657 0.713 0 0.7478 2C
2.9835 5.1153 0.7929 0.5448 0.6875 0 0.7478 2C
2.9841 5.0265 0.8212 0.5516 0.6714 0 0.7478 2C
2.9824 5.0673 0.8353 0.5704 0.6826 0 0.7478 2C
2.8129 5.1439 0.7506 0.5354 0.7138 0 0.7478 2C
3.0551 5.0482 0.8259 0.5782 0.7011 0 0.7478 2C
3.0024 5.0869 0.8047 0.5788 0.7193 0 0.7478 2C
2.8538 5.155 0.7812 0.5305 0.6787 0 0.7478 2C
2.9129 5.1307 0.8165 0.5812 0.7118 0 0.7478 2C
2.8842 5.1079 0.8235 0.5469 0.6638 0 0.7478 2C
2.9341 5.1263 0.7882 0.5412 0.6866 0 0.7478 2C

89

FMT NAS PF TPS PS CD CA COA
2.9137 5.1132 0.8212 0.5751 0.7 0 0.7478 2C
2.8966 5.1063 0.7835 0.5129 0.6547 0 0.7478 2C
2.9744 5.175 0.7953 0.5542 0.6973 0 0.7478 2C
3.0675 5.0836 0.8 0.5461 0.6834 0 0.7478 2C
2.935 5.071 0.8188 0.5236 0.6398 0 0.7478 2C
2.8272 5.1135 0.8047 0.5211 0.6472 0 0.7478 2C
2.8883 5.0791 0.8141 0.5647 0.6936 0 0.7478 2C
2.9564 5.0979 0.7882 0.5141 0.6518 0 0.7478 2C
3.0022 5.139 0.7859 0.5576 0.7096 0 0.7478 2C
2.8994 5.066 0.8094 0.5129 0.6337 0 0.7478 2C
2.8379 5.1557 0.8024 0.5352 0.6667 0 0.7478 2C
3.7588 4.8069 0.9741 0.5835 0.599 1 1 2D
3.4789 4.7719 0.9906 0.5788 0.5843 2 1 2D
3.4735 4.7876 0.9788 0.5657 0.5779 0 1 2D
3.8007 4.8285 0.9906 0.5812 0.5867 3 1 2D

3.51 4.8097 0.9882 0.5981 0.6053 1 1 2D
3.5406 4.7746 0.9859 0.5708 0.5789 1 1 2D
3.696 4.845 0.9788 0.5637 0.5759 2 1 2D
3.6772 4.7752 0.9788 0.5906 0.6034 0 1 2D
3.5899 4.8433 0.9741 0.5896 0.6053 0 1 2D
3.652 4.7281 0.9835 0.5532 0.5625 4 1 2D
3.6699 4.8576 0.9788 0.5915 0.6043 1 1 2D

3.65 4.7465 0.9788 0.5626 0.5749 1 1 2D
3.3757 4.7804 0.9812 0.6226 0.6346 0 1 2D
3.6134 4.7194 0.9882 0.6455 0.6532 0 1 2D
3.7842 4.7993 0.9788 0.6329 0.6466 0 1 2D
3.8397 4.7077 0.9882 0.6 0.6071 1 1 2D
3.6795 4.8586 0.9812 0.6197 0.6316 0 1 2D
3.5925 4.8546 0.9835 0.5849 0.5947 0 1 2D
3.4133 4.848 0.9741 0.6085 0.6247 0 1 2D
3.5963 4.8895 0.9694 0.5563 0.5738 2 1 2D
3.5736 4,724 0.9835 0.5283 0.5372 1 1 2D
3.5786 4.7092 0.9882 0.5953 0.6024 2 1 2D
3.7691 4.6476 0.9788 0.5235 0.5348 2 1 2D
3.493 4.8323 0.9788 0.6009 0.6139 2 1 2D
3.4228 4.8737 0.9812 0.6071 0.6187 0 1 2D
3.7033 4.6742 0.9741 0.5354 0.5496 2 1 2D
3.5499 4.7487 0.9835 0.6043 0.6145 1 1 2D
3.7007 4.6675 0.9788 0.6009 0.6139 1 1 2D
3.5518 4.6937 0.9741 0.6033 0.6193 1 1 2D
3.5995 4.7868 0.9812 0.5943 0.6058 0 1 2D
3.7848 4.6869 0.9718 0.5587 0.5749 2 1 2D
3.7498 4.7653 0.9812 0.5835 0.5947 2 1 2D
3.5665 4.7174 0.9859 0.5519 0.5598 2 1 2D
3.5218 4.7339 0.9812 0.5972 0.6087 0 1 2D
3.8332 4.7273 0.9741 0.6085 0.6247 1 1 2D
3.485 4.805 0.9741 0.6094 0.6256 0 1 2D

90

FMT NAS PF TPS PS CD CA COA
3.5289 4.8139 0.9718 0.5459 0.5617 3 1 2D
3.464 4.8092 0.9788 0.5553 0.5673 1 1 2D
3.6728 4,773 0.9694 0.5613 0.5791 0 1 2D
3.6984 4.8241 0.9647 0.5446 0.5645 1 1 2D
3.7763 4.6909 0.9859 0.5859 0.5943 3 1 2D
3.6571 4.8935 0.9812 0.6123 0.6241 0 1 2D
3.5098 4.7184 0.9882 0.6052 0.6124 0 1 2D
3.6817 4.7436 0.9741 0.5495 0.5642 1 1 2D
3.6338 4.7682 0.9765 0.6118 0.6265 1 1 2D
3.7752 4.7118 0.9694 0.5647 0.5825 2 1 2D
3.483 4.7566 0.9835 0.6108 0.6211 1 1 2D
3.4327 47743 0.9882 0.5498 0.5564 0 1 2D
3.9431 4.7202 0.9765 0.5731 0.587 0 1 2D
3.6601 4.8122 0.9765 0.554 0.5673 0 1 2D

91

THISPAGE INTENTIONALLY LEFT BLANK

92

APPENDIX 3: MAUT FUNCTION

function(weights, data)
{
#
strip COA designator from data
temp <- datd[, 1.7] # get best and worst column data
bestFMT <- min(temp[, 1])
WOrstFMT <- max(temp[, 1])
bestNAS <- max(temp[, 2])
WOrstNAS <- min(templ, 2])
bestPF <- max(temp][, 3])
worstPF <- min(temp[, 3])
bestTPS <- max(temp], 4])
worstTPS <- min(temp], 4])
bestPS <- max(temp][, 5])
worstPS <- min(temp[, 5])
bestCD <- min(temp][, 6])
worstCD <- max(temp], 6])
bestCA <- max(temp[, 7])
worstCA <- min(temp][, 7])
best <- c(bestFMT, bestNAS, bestPF, best TPS, bestPS, bestCD, bestCA)
worst <- c(worstFMT, worstNAS, worstPF, worstTPS, worstPS, worstCD, worstCA)
compute individual values for each column
difference <- best - worst
for(i in 1:length(temp[, 1])) {
temp[i,] <- (temp[i,] - worst)/difference

mult columns by weight and then sum the rows to get MAUT vaues
X <- t(weights %* % t(temp))
X <- data.frame(x, data[, 8])
names(x) <- c("UTILITY", "COA")
return(x)

93

THISPAGE INTENTIONALLY LEFT BLANK

94

A.

*

~
* ok ok ok ok Ok ok F Ok

~

*

APPENDIX 4: FSST PROGRAM

INSTANCE METHODS
1. AO

Juan K Ul oa

Thesis: FSST
January 13, 2001

<P> This class establishes the Area of (perations (AO for the
simulation. This class also establishes the parameters for
what distributions dictate where targets arrive in the AO

package fsst;

import sinkit.*;
import sinkit.smd. *;
import sinkit.data.*;

public class AQ

11

/1

/1

/1

/1

cl ass vari abl es
public static RandomN\unber seed;

instance vari abl es

private RandonVariate xCoord;

private RandonVari ate yCoord,;

private Coordinate |owerlLeft;

private Coordi nate upperR ght;

private String xDistribution;

private String yDi stribution;

private Cbject[] xDistributionParaneters;
private (oject[] yDistributionParaneters;

constructors
static {seed = Randonfact ory. get RandomN\unber ();}

public AQ(Coordinate theLowerlLeft, Coordinate theUpperR ght,
String xDist, (hject[] xDi stParans, String yDist, bject[] yD stParans){

xDi stribution = xDist;

xDi stributionParaneters = ((oject[])xD st Parans. cl one();

yDi stribution = yDist;

yDi stributionParanmeters = (Qoj ect[])yD stParans. clone();

| ower Left = new Coordi nat e(t heLower Left);

upper R ght = new Coor di nat e(t heUpper Ri ght) ;

xCoord = Randonfact ory. get RandonVari at e(xDi stribution, xDi stributionParaneters,
Randonfact ory. get RandomNunber ()) ;

yCoord = Randonfact ory. get RandonVari ate(yD stribution, yDi stributionParaneters,
Randonfact ory. get RandomNunber ()) ;

}

publ i c AQ(AO t heBox) {
t hi s(t heBox. get Lower Left (), t heBox. get Upper Ri ght (), theBox. get XD stri bution(),
t heBox. get XDi stri buti onParanmeters(), theBox.getYDi stribution(),
t heBox. get YD stri buti onParaneters());
}

cl ass met hods

public static void setSeed(long theSeed){
seed. set Seed(t heSeed) ;
}

i nstance net hods
public Coordinate getLowerLeft(){return new Coordi nate(lowerLeft);}

publ i c Coordi nate get Upper Ri ght (){return new Coor di nat e(upper Ri ght);}
95

publ i c Coordi nate get Randoniocati on(){
doubl e xCoordi nate = xCoord. generate();
doubl e yCoordi nate = upper Ri ght. get YCoor d()-yCoord. generate();
if ((xCoordinate >= | owerlLeft.get XCoord()) &&
(xCoor di nat e <= upper R ght. get XCoord()) &&
(yCoordinate >= 0)){
return new Coor di nat e(xCoor di nate, yCoordinate);

}
el se {

return this.getRandoniocation();
}

}

public String getXDistribution(){return new String(xDistribution);}
public String getVYDi stribution(){return new String(yDi stribution);}
public Cbject[] getXDi stributionParaneters(){

return (Qoject[])xD stributionParaneters.clone();
}

public Cbject[] getYD stributionParaneters(){
return (Qbject[])yDi stributionParaneters.clone();

}
public String toString(){
return "Lower left: " + this.getLowerLeft() + ", Upper Right: " +
this.getUpperRight() + ", Xdistribution: " + this.getXD stribution() +
", X distribution paranmeters: " + this.getXDi stributionParaneters() +
", Ydistribution: " + this.getYDistribution() +
", Y distribution paranmeters: " + this.getVYD stributionParaneters();
}
}
2. BattlefieldData
/**
* Juan K Ul oa

* Thesis: FSST
* January 13, 2001
*
* <P> This class tracks the battlefield data such as makeup, etc.
*
**/

package fsst;
inmport java.util.*;

public class Battl eFi el dDat af

private doubl e percent Arnor;

private doubl e percentlnfantryl nGpen;
private doubl e percentl|nfantryDugln;
private doubl e percent Armor edPC,
private doubl e percentLi ght Ski nVehi cl e;

private int destroyArnor;
private int destroyArnorSal vo;
private int neutralizeArnor;
private int neutralizeArnorSal vo;
private int suppressArnor;
private int suppressArnorSal vo;
private int destroyllQ

private int destroyllOSal vo;
private int neutralizellQ
private int neutralizell Csal vo;
private int suppressl|Q
private int suppressl|CSal vo;

96

private int destroyl D ;

private int destroyl D Sal vo;

private int neutralizelD;
i
i
i

private int neutralizel D Sal vo;
private int suppressiD;
private int suppresslD Sal vo;
private int destroyAPC,

private int destroyAPCSal vo;
private int neutralizeAPC
private int neutralizeAPCSal vo;
private int suppressAPC,
private int suppressAPCSal vo;
private int destroyLSV,

private int destroyLSVSal vo;
private int neutralizelLSV,
private int neutralizelLSVSal vo;
private int suppressLSV,
private int suppressLSVSal vo;

private doubl e percentDestroy;
private doubl e percentNeutralize;
private doubl e percent Suppress;

private double fleeProbability;
private |ong seed;
private Random r;

private doubl e col | at eral DanageRadi us;
private doubl e coll ateral DanagePer cent ;
private int nunberCol | at er al DanageCausi ngRounds;

public Battl eFi el dDat a(doubl e t hePercent Arnor, i nt theDestroyArnor,
int theDestroyArnorSalvo,int theNeutralizeArnor,int theNeutralizeArnorSalvo,
int theSuppressArnor,int theSuppressArnorSal vo, doubl e thePercent | nfantryl nOpen,
int theDestroyll Qint theDestroyll CSalvo,int theNeutralizellQ
int theNeutralizellGsal vo,int theSuppressl|Q int theSuppressl|Csalvo,
doubl e thePercentlnfantryDugln,int theDestroylD,int theDestroyl D Sal vo,
int theNeutralizelDl,int theNeutralizel D Sal vo,int theSuppresslDl,
int theSuppressl D Sal vo, doubl e t hePer cent Armor edPC, i nt t heDestroyAPC,
i nt theDestroyAPCSal vo,int theNeutralizeAPC int theNeutralizeAPCSal vo,
i nt theSuppressAPC, int theSuppressAPCSal vo, doubl e t hePer cent Li ght Ski nVehi cl e,
int theDestroyLSV,int theDestroyLSVSalvo,int theNeutralizelLSV,
int theNeutralizelLSVSal vo,int theSuppressLSV,int theSuppressLSVSal vo,
doubl e t hePercent Destroy, doubl e thePercentNeutralize, double thePercent Suppress,
doubl e t heFl eeProbability,|ong theSeed, doubl e theCol | at er al DanmageRadi us,
doubl e theCol | at er al DamagePer cent) {

percent Arnor = t hePercent Arnor;

destroyArnor = theDestroyArnor;

destroyArnor Sal vo = t heDestroyAr nor Sal vo;
neutrali zeArnor = theNeutralizeArnor;

neutral i zeArnor Sal vo = theNeutralizeArnor Sal vo;
suppressArnor = t heSuppressArnor;

suppr essArnor Sal vo = t heSuppr essAr nor Sal vo;

percent I nfantryl nQpen = t hePercent | nfantryl nCpen;
destroyl 1 O = theDestroyl | O

destroyl | GSal vo = theDestroyl | CSal vo;
neutralizell O = theNeutralizell Q

neutralizell OSal vo = theNeutralizel | Csal vo;
suppressl | O = theSuppressl |1 O

suppressl | C8al vo = t heSuppressl | OSal vo;

percent | nfantryDugl n = t hePercent | nfantryDugl n;
destroyl DI = theDestroyl Dl ;

destroyl Dl Sal vo = theDestroyl Dl Sal vo;
neutralizelD = theNeutralizelD;

neutralizel Dl Sal vo = theNeutralizel Dl Sal vo;

97

}

suppress| DI = theSuppressl D ;
suppressl Dl Sal vo = t heSuppressl Dl Sal vo;

per cent Arnor edPC = t hePer cent Ar nor edPC,
dest r oyAPC = t heDest r oyAPC;

dest royAPCSal vo = t heDest r oyAPCSal vo;
neutralizeAPC = theNeutral i zeAPC;

neutral i zeAPCSal vo = theNeutral i zeAPCSal vo;
suppr essAPC = t heSuppr essAPC,

suppr essAPCSal vo = t heSuppr essAPCSal vo;

per cent Li ght Ski nVehi cl e = t hePer cent Li ght Ski nVehi cl e;
destroyLSV = theDestroyLSV;

destroyLSVSal vo = t heDestroyLSVSal vo;

neutralizeLSV = theNeutralizelLSV;

neutral i zeLSVSal vo = theNeutral i zeLSVSal vo;
suppressLSV = t heSuppressLSV,

suppressLSVSal vo = t heSuppressLSVSal vo;

per cent Destroy = thePercent Destroy;
percent Neutral i ze = thePercent Neutrali ze;
per cent Suppress = t hePer cent Suppr ess;

set Seed(t heSeed) ;

r = new Randon{t heSeed);

set Fl eeProbabi | ity(theFl eeProbability);

col | at er al DamageRadi us = t heCol | at er al DamageRadi us;
col | at er al DamagePer cent = t heCol | at er al DanagePer cent ;

public BattleFi el dData(Battl eFi el dData theBatt| eFi el dDat a) {

percent Arnor = theBattl eFi el dDat a. get Percent Arnor () ;

destroyArnmor = theBattl eFi el dDat a. get Dest r oyArnor () ;

destroyArnor Sal vo = theBattl eFi el dDat a. get Dest r oyAr nor Sal vo() ;
neutralizeArnmor = theBattl eFi el dDat a. get Neutral i zeArnor();
neutralizeArnorSalvo = theBattl eFi el dDat a. get Neutral i zeAr nor Sal vo() ;
suppressArnor = theBattl eFi el dDat a. get Suppr essArnor () ;

suppressArnor Sal vo = theBattl eFi el dDat a. get Suppr essAr nor Sal vo() ;

percentInfantryl nOpen = theBattl eFi el dDat a. get Percent! 1 Q) ;
destroyl 1 O = theBattl eFi el dDat a. get Destroyl | () ;

destroyl | GSal vo = theBattl eFi el dDat a. get Dest royl | CSal vo() ;
neutralizell O = theBattl eFi el dData. get Neutralizell);
neutralizell C8al vo = theBattl eFi el dDat a. get Neutral i zel | OSal vo();
suppressl |1 O = theBatt| eFi el dDat a. get Suppressl |1 () ;

suppressl | OSal vo = theBatt! eFi el dDat a. get Suppr essl | OSal vo() ;

percent | nfantrybugln = theBattl eFi el dDat a. get Percent | DI ();
destroyl DI = theBattl eFi el dDat a. get Destroyl DI () ;

destroyl Dl Sal vo = theBatt| eFi el dDat a. get Destroyl Dl Sal vo() ;
neutralizelD = theBattleFi el dData.getNeutralizelD ();
neutralizel Dl Sal vo = theBattl eFi el dDat a. get Neutral i zel DI Sal vo();
suppressli DI = theBattl eFi el dDat a. get Suppressl D ();

suppressl Dl Sal vo = theBattl eFi el dDat a. get Suppr essl| Dl Sal vo();

per cent Arnor edPC = t heBatt| eFi el dDat a. get Per cent APC() ;
destroyAPC = theBattl eFi el dDat a. get Dest r oyAP(() ;

destroyAPCSal vo = theBatt| eFi el dDat a. get Dest r oyAPCSal vo() ;
neutral i zeAPC = theBattl| eFi el dDat a. get Neutral i zeAPC() ;

neutral i zeAPCSal vo = theBatt!l eFi el dDat a. get Neut ral i zeAPCSal vo() ;
suppr essAPC = theBatt | eFi el dDat a. get Suppr essAPC() ;

suppr essAPCSal vo = theBattl eFi el dDat a. get Suppr essAPCSal vo() ;

per cent Li ght Ski nVehi cl e = theBatt| eFi el dDat a. get Percent LSV() ;
destroyLSV = theBattl eFi el dDat a. get Dest royLSV() ;

destroyLSVSal vo = theBatt| eFi el dDat a. get Dest r oyLSVSal vo() ;
neutralizeLSV = theBattl eFi el dData. get Neutral i zeLS\V();

neutral i zeLSVSal vo = theBattl eFi el dDat a. get Neutral i zeLSVSal vo() ;
suppressLSV = theBattl eFi el dDat a. get Suppr essLSV() ;
suppressLSVSal vo = theBatt| eFi el dDat a. get Suppr essLSVSal vo() ;

98

percent Destroy = theBattl eFi el dDat a. get Per cent Destroy();

percent Neutral i ze = theBattl eFi el dDat a. get Percent Neutral i ze();

per cent Suppress = theBattl eFi el dDat a. get Per cent Suppress();

set Seed(t heBat t| eFi el dDat a. get Seed()) ;

r = new Randon(seed);

set Fl eeProbabi | i ty(theBattl eFi el dDat a. get Fl eeProbabi lity());

col | at er al DanageRadi us = theBatt| eFi el dDat a. get Col | at er al DanageRadi us() ;

col | at eral DamagePercent = theBattl eFi el dDat a. get Col | at er al DamagePer cent () ;
}

publ i c doubl e getPercent Arnor(){return percentArnor;}

public int getDestroyArnor(){return destroyArnor;}

public int getDestroyArnorSal vo(){return destroyArnorSal vo;}
public int getNeutralizeArnor(){return neutralizeArnor;}
public int getNeutralizeArnorSal vo(){return neutralizeArnorSalvo;}
public int getSuppressArnor(){return suppressArnor;}

public int getSuppressArnorSal vo(){return suppressArnorSal vo;}
public double getPercentl| Q){return percentlnfantryl nCpen;}
public int getDestroyll Q(){return destroyllQ}

public int getDestroyll OSal vo(){return destroyl| CSal vo;}
public int getNeutralizell Q){return neutralizell G}

public int getNeutralizellQOSalvo(){return neutralizell CSal vo;}
public int getSuppressliQ){return suppressl|Q}

public int getSuppressl|OSal vo(){return suppressl|CSsal vo;}
public doubl e getPercent!l D (){return percentlnfantryDugln;}
public int getDestroyl D (){return destroylD ;}

public int getDestroyl D Sal vo(){return destroyl Dl Sal vo;}
public int getNeutralizelD (){return neutralizelD;}

public int getNeutralizelD Sal vo(){return neutralizel D Sal vo;}
public int getSuppressiD (){return suppressiD;}

public int getSuppressl D Sal vo(){return suppressl Dl Sal vo;}
publ i ¢ doubl e get Percent APC() {return percent Ar nor edPC, }

public int getDestroyAPC(){return destroyAPC }

public int getDestroyAPCSal vo(){return destroyAPCSal vo;}
public int getNeutralizeAPC(){return neutralizeAPC }

public int getNeutralizeAPCSal vo(){return neutralizeAPCSal vo;}
public int getSuppressAPC(){return suppressAPC }

public int getSuppressAPCSal vo(){return suppressAPCSal vo; }
publ i ¢ doubl e get Percent LSV(){return percentLi ght Ski nVehi cl e;}

public int getDestroyLSV(){return destroyLSV,}

99

public int getDestroyLSVSal vo(){return destroyLSVSal vo;}
public int getNeutralizeLSV(){return neutralizelLSV;}
public int getNeutralizeLSVSal vo(){return neutralizeLSVSal vo;}
public int getSuppressLSV(){return suppressLSV;}
public int getSuppressLSVSal vo(){return suppressLSVSal vo;}
publ i ¢ doubl e get Percent Destroy(){return percentDestroy;}
publ i c doubl e getPercentNeutralize(){return percentNeutralize;}
publ i ¢ doubl e get Per cent Suppress(){return percent Suppress;}
public bool ean isDestroyed(String target Type, int hits){

if (targetType.equal s("Arnor")){

return (hits>getDestroyArnor());

el se if(targetType. equal s("InfantrylnCpen")) {
return (hits>getDestroyll (());

}
el se if(target Type. equal s("I nfantryDugln")){
return (hits>getDestroyl D ());

}
el se if(target Type. equal s("APC")){
return (hits>getDestroyAPC());

el se {
return (hits>getDestroyLSV());
}

}
public bool ean isNeutralized(String targetType, int hits){
if (target Type. equal s("Arnor")){
return (hits>getNeutralizeArnor());

el se if(target Type. equal s("I nfantryl nQpen")){
return (hits>getNeutralizell ());

}
el se if(target Type. equal s("I nfantryDugln")){
return (hits>getNeutralizelD());

el se if(target Type. equal s("APC")){
return (hits>getNeutralizeAPC());

el se {
return (hits>getNeutralizelLS\V());
}

}

public bool ean isSuppressed(String targetType, int closeCalls){
if (targetType. equal s("Arnor")){
return (closeCal | s>get SuppressArnor());

el se if(target Type. equal s("Infantryl nQpen")){
return (cl oseCall s>get Suppress! |1 Q());

}
el se if(target Type. equal s("Infantrybugln")){
return (cl oseCall s>get SuppressiDi());

el se if(target Type. equal s("APC")){
return (closeCal | s>get SuppressAPC());

el se {
return (cl oseCal |l s>get SuppressLSV());
}

}
public doubl e getFl eeProbability(){return fleeProbability;}
100

public void setFl eeProbability(doubl e theFl eeProbability){
fleeProbability = theFl eeProbability;
}

publ i ¢ doubl e get Col | at er al DamageRadi us() {return col | at er al DamageRadi us; }
publ i c doubl e get Col | at er al DanagePercent () {return col | at er al DamagePer cent ; }
public bool ean di dFl ee(){return (r.nextDoubl e()<fleeProbability);}

public Iong getSeed(){return seed;}

public void set Seed(long theSeed){
seed = theSeed,;
}

public String getTarget Type(){
doubl e target Generator = r.nextDoubl e();
if (targetGenerator <= percentArnor){
return "Arnor";

else if (targetGenerator <= (percentArnor+percentlnfantryl nCen)){
return "I nfantryl nCpen";

else if (targetGenerator <= (percentArnor+percent!nfantryl nQpen+
per cent | nfant ryDugl n)) {
return "I nfantryDugln";

else if (targetGenerator <= (percentArnor+percentl|nfantryl nCpen+
percent | nfantryDugln + percent ArnmoredPC)) {
return "APC';

el se{
return "Light Ski nVehicl e";
}

}

public String getFireMssionType()({
doubl e m ssi onGenerator = r.nextDoubl e();
if (mssionCenerator <= percentDestroy){
return "Destroy";

else if (mssionGenerator <= (percentDestroy+percentNeutralize))({
return "Neutralize";

}
el se{

return "Suppress”;
}

}

public int getSal voSize(String theTarget Type, String theM ssion){
i f ((theTarget Type. equal s("Arnor")) &(t heM ssi on. equal s("Destroy"))){
return destroyArnor Sal vo;

}
else if ((theTarget Type.equal s("Arnor")) &&(theM ssion. equal s("Neutralize"))){
return neutralizeArnorSal vo;

}
else if ((theTarget Type. equal s("Arnor"))&(theM ssi on. equal s(" Suppress"))){
return suppressArnor Sal vo;

}
else if ((theTarget Type.equal s("Infantryl nOpen")) &&(theM ssi on. equal s("Destroy"))){
return destroyl | OSal vo;

else if
((theTar get Type. equal s("I nfantryl nOpen")) &(t heM ssi on. equal s("Neutralize"))){
return neutralizel | CSal vo;

else if

((theTar get Type. equal s("I nfantryl nOpen")) &(t heM ssi on. equal s(" Suppress"))){
return suppressl | Csal vo;

101

}
else if ((theTargetType.equal s("Infantrybugln"))&&(theM ssion. equal s("Destroy"))){
return destroyl D Sal vo;

else if
((theTar get Type. equal s(" I nfantryDugl n")) &t heM ssi on. equal s("Neutralize"))){
return neutralizel D Sal vo;

}
else if ((theTarget Type. equal s("InfantryDugln")) & theM ssi on. equal s(" Suppress"))){
return suppressl Dl Sal vo;

}
else if ((theTarget Type. equal s("APC')) &&(t heM ssi on. equal s("Destroy"))){
return destroyAPCSal vo;

}
else if ((theTarget Type. equal s("APC')) &(t heM ssi on. equal s("Neutralize"))){
return neutralizeAPCSal vo;

}
else if ((theTargetType. equal s("APC')) &&(t heM ssi on. equal s(" Suppress"))){
return suppressAPCSal vo;

else if
((theTar get Type. equal s("Li ght Ski nVehi cl ")) &(t heM ssi on. equal s("Destroy"))){
return destroyLSVSal vo;

else if
((theTar get Type. equal s("Li ght Ski nVehi cl e")) &(t heM ssi on. equal s("Neutralize"))){
return neutralizelLSVSal vo;

}
el se{

return suppressLSVSal vo;
}

}

public int getH tsNeeded(String theTarget Type, String theM ssion){
if ((theTarget Type. equal s("Arnor"))&(t heM ssi on. equal s("Destroy"))){
return destroyArnor;

}
else if ((theTarget Type. equal s("Arnor"))&.&(theM ssion. equal s("Neutralize"))){
return neutralizeArnor;

}
else if ((theTarget Type. equal s("Arnor")) &(theM ssi on. equal s(" Suppress”))){
return suppressArnor;

}
else if ((theTarget Type. equal s("Infantryl nCpen"))&(theM ssi on. equal s("Destroy"))){
return destroyll QO

else if
((theTarget Type. equal s("Infantryl nOpen")) &t heM ssi on. equal s("Neutralize"))){
return neutralizell Q

else if
((theTar get Type. equal s(" I nfantryl nOpen")) &(t heM ssi on. equal s(" Suppress"))){
return suppressi|1Q

else if ((theTarget Type. equal s("InfantryDugln"))&(theM ssion. equal s("Destroy"))){
return destroyl Dl ;

else if
((theTarget Type. equal s("I nfantryDugl n")) &&(t heM ssi on. equal s("Neutralize"))){
return neutralizelD;

}
else if ((theTarget Type. equal s("InfantryDugln")) &t heM ssi on. equal s(" Suppress"))){
return suppressiD;

}
else if ((theTarget Type. equal s("APC')) &&(theM ssi on. equal s("Destroy"))){
return destroyAPC;

}
else if ((theTargetType. equal s("APC')) &&(theM ssi on. equal s("Neutralize"))){
return neutralizeAPC

}
else if ((theTarget Type. equal s("APC')) &t heM ssi on. equal s(" Suppress"))){
102

return suppressAPC,

else if
((theTar get Type. equal s("Li ght Ski nVehi cl e")) &(t heM ssi on. equal s("Destroy"))){
return destroyLSV;
}

else if
((theTar get Type. equal s("Li ght Ski nVehi cl e")) &(t heM ssi on. equal s("Neutralize"))){
return neutralizelLSV,;

}
el se{

return suppressLSy,
}

}

public int getDestroy(String theTarget Type){
if (theTarget Type. equal s("Arnmor")){
return destroyArnor;

}
el se if (theTarget Type. equal s("Infantryl nCpen")){
return destroyllQ

}
else if (theTarget Type.equal s("InfantrybDugln")){
return destroyl Dl ;

}
el se if (theTarget Type. equal s("APC")){
return destroyAPC,

}
el se{

return destroyLSV;
}

}

public int getNeutralize(String theTarget Type){
if (theTarget Type. equal s("Armor")){
return neutralizeArnor;

}
el se if (theTarget Type. equal s("Infantryl nOpen")){
return neutralizell O

}
el se if (theTarget Type. equal s("InfantryDugln")){
return neutralizelD;

}
else if (theTarget Type. equal s("APC")){
return neutral i zeAPC,

}
el se{

return neutralizelLSV;
}

}

public int getSuppress(String theTarget Type){
if (theTarget Type. equal s("Armor")){
return suppressArnor;

}
else if (theTarget Type. equal s("Infantryl nOpen")){
return suppressi1Q

}
el se if (theTarget Type. equal s("InfantryDugln")){
return suppresslD;

}
el se if (theTarget Type. equal s("APC")){
return suppressAPC

}
el se{

return suppressLSV,
}

}

public void increaseNunber Col | at er al DamageCausi ngRounds() {
nunber Col | at er al DamageCausi ngRounds++;

103

/**

}

public int getNunber Col | at er al DamageCausi ngRounds() {

}

return nunber Col | at er al DamageCausi ngRounds;

public void reset Col | at er al DanmageCausi ngRounds() {

nunber Col | at er al DamageCausi ngRounds=0;

}
publ i ¢ doubl e get RandonNunber () {return r. next Doubl e();}

3. Shooter

* Juan K Uloa

Thesis: FSST
January 13, 2001

*

*

P

*

/

<P> This class creates an instance of an artillery piece (shooter).

package fsst;

inport sinkit.*;

import sinkit.data.*;

inport sinkit.snd.*;

i mport java.text. Deci mal Format ;

public class Shooter extends SinEntityBase{

/1

11

i nstance vari abl es

private Coordi nate shooterLocation;
private doubl e shoot er Range;

private doubl e probabl eError Range;
private doubl e probabl eErrorDefl ection;
private double maxRateOf Fire;

private String acquireServi ceDi stribution;
private String firingServiceD stribution;
private RandonVariate acquireServiceTi ne;
private RandonVariate firingServiceTi ne;
private RandonVari ate shot RangeError;
private RandonVariate shotDefl Error;
private int nunber Rounds;

private int startNunber Rounds;

private int burstRadius;

private doubl e DestroyBurstRadi us;
private doubl e NeutralizeBurstRadi us;
private doubl e SuppressBurst Radi us;
private doubl e neanProjectil eVel ocity;
private String platfornilype;

private int nunberQuns;

constructor nethods
publ i ¢ Shoot er (Coor di nat e t heShoot er Locati on, doubl e t heShoot er Range,

doubl e thePER, doubl e thePED, String theAcquireServiceD stribution,
hj ect[] theAcquireParanmeters, String theFiringServiceDistribution,
oj ect[] theFiringParaneters, double theMaxRateOFire, 1ong firingSeed,
| ong acquireSeed, int rounds, int theBurstRadius, double theMeanProjectileVelocity,
String thePlatfornilype, int theNunber@ins){
acqui reServi ceTi ne = Randonfact ory. get RandonVar i at e(t heAcqui r eServi ceDi stri buti on,
t heAcqui r ePar anet er s, acqui r eSeed) ;
firingServiceTi ne = Randonfact ory. get RandonVar i at e(t heFi ri ngServi ceDi stri buti on,
theFiringParaneters, firingSeed);
shot RangeError = Randonfact ory. get RandonVari at e(" Nor mal ",
new Obj ect []{new Doubl (0. 0), new Doubl e(thePER)});
shot Def | Error = Randonfact ory. get RandonVari at e(" Normal ", new oj ect[] { new

Doubl (0. 0),

new Doubl e(t hePED) });
set Acqui reServi ceDi stribution(theAcquireServiceD stribution);

104

set FiringServiceD stribution(theFiringServiceD stribution);
shoot er Locati on = new Coor di nat e(t heShoot er Locat i on) ;
shoot er Range = t heShoot er Range;
probabl eError Range = t hePER
probabl eError Defl ecti on = t hePED,
st art Nunmber Rounds = rounds;
nunber Rounds = rounds;
bur st Radi us = t heBur st Radi us;
Dest r oyBur st Radi us = Mat h. sqrt (18*bur st Radi us*bur st Radi us) ;
Neut ral i zeBur st Radi us = Mat h. sqrt (6*bur st Radi us*bur st Radi us) ;
Suppr essBur st Radi us = 2*Mat h. sqgrt (3*bur st Radi us* bur st Radi us) ;
nmeanProj ectil eVelocity = theMeanProjectil eVel ocity;
pl atf ormType = new String(thePl atfornilype);
maxRateOfFire = theMaxRateO Fire;
nunber Quns = t heNunber Quns;
}

/1 class nethods
publ i c bool ean i nRange(Target theTarget){
return (shooterLocation. di stanceFron(theTarget. get Tar get Locati on()) <=shoot er Range) ;
}
publ i ¢ Coordi nat e get Shoot er Locati on(){return new Coor di nat e(shoot er Locati on);}
publ i c doubl e get Shoot er Range() {ret urn shoot er Range; }
public void set Shoot er Range(doubl e t heShoot er Range) {
shoot er Range = t heShoot er Range;
}
publ i ¢ doubl e get PER(){return probabl eError Range;}
public void set PER(doubl e t hePER){
pr obabl eError Range = t hePER;
publ i c doubl e get PED(){return probabl eErrorDefl ection;}
public void set PED(doubl e t hePED){

probabl eErrorDefl ecti on = t hePED,

public void setAcquireServiceDi stribution(String newb stribution){
acquireServiceDi stribution = newDi stribution;

public void setFiringServiceD stribution(String newD stribution){
firingServiceDi stribution = newDi stribution;

public String getAcquireDi stribution(){return

acqui reServi ceTi me. get A ass() . get Nane(); }
public String getFiringD stribution(){return firingServiceTi me.getC ass().getNare();}
public void setAcquireParaneters(Chject[] newParaneters){

acqui reServi ceTi ne. set Par anet er s(newPar anet er s) ;
}

public void setFiringParaneters(Chject[] newParaneters) {

firingServiceTi ne. set Par anet er s(newPar anet er s) ;
}
public Object[] getAcquireParaneters(){return acquireServiceTi ne.get Paraneters();}
public oject[] getFiringParaneters(){return firingServiceTi nme.getParaneters();}
public doubl e get Servi ceTi me(Target theTarget){

int volleys = (int)Mth.ceil ((doubl e)theTarget. get Sal voSi ze()/ nunber Quns); ;
doubl e t gt Range = shoot erLocati on. di st anceFron{theTar get. get Target Locati on());

105

/**
*

*

doubl e tof = tgtRange/ neanProjectil eVel ocity;
doubl e firingTine = firingServiceTine.generate();
doubl e acquireTi ne = acquireServiceTi ne. generate();
if (firingTine<0.0){

firingTime = 0.0 + vol | eys/ nexRateX Fi re;
}
el sef

firingTine += voll eys/ maxRateOfFire;;

}

i f (acquireTi ne<0.0){
acquireTime = 0.0;

}

return firingTine + acquireTine + tof;

}

publ i c doubl e get Repeat Servi ceTi ne(Target theTarget){
int volleys = (int)Mth.ceil ((doubl e)theTarget.get Sal voSi ze()/ nunber Quns) ; ;
doubl e firingTime = voll eys/ naxRat ek Fire;
doubl e tgt Range = shoot erLocati on. di st anceFron(t heTar get. get Tar get Location());
doubl e tof = tgtRange/ neanProjectileVel ocity;
return firingTime + tof;

}
public int getNunberRounds(){return nunber Rounds;}

publ i ¢ bool ean hasRounds(){return (nunberRounds>0);}

public void decrenent Rounds(int roundsFired){
nunber Rounds -= roundsFi r ed;
}

public void increnment Rounds(int resupply){
nunber Rounds+=r esuppl y;
}

publ i ¢ Coordi nat e get Si ngl eShot Locati on(Coor di nate theTarget){
doubl e t gt Range = shoot er Locat i on. di st anceFron(t heTarget);
doubl e xVec = (theTarget). get XCoord() -shoot er Locat i on. get XCoor d() ;
doubl e angl e = Mat h. acos(xVec/t gt Range) ;
doubl e defl ectionError = tgtRange/ 1000*shot Def| Error. generate();
doubl e rangeError = shot RangeError. generate();
doubl e deltaX = Math. cos(angl e) *rangeError + Math. sin(angl e)*defl ecti onError;
doubl e deltaY = Math. si n(angl e) *rangeError - Math. cos(angl e)*defl ecti onError;
Coor di nate shotLocation = (theTarget).increnentBy(new Coordi nat e(del taX deltay));
return new Coor di nat e(shot Locat i on) ;

}

public int getBurstRadius(){return burstRadius;}

public String getPlatformlype(){return new String(pl atfornType);}
public void reset(){

super.reset();
nunber Rounds = st art Nunber Rounds;

}
public String toString()({
return "Shooter is: " + platfornfType + ", its location is: " +
thi s. get ShooterLocation() + ", shooter range is: " + this.getShooterRange() +
", shooter PERis: " + this.getPER() +
", shooter PEDis: " + this.getPEDX) +
", shooter has: " + this.getNunberRounds() + " rounds remaining.";
}
4, Target

Juan K Ul oa

Thesis: FSST

106

January 13, 2001

time that the call for fire (CFF) is initially made.

*
*
* <P> This class creates an instance of a target that stores the
*
* This tine is the arrival tine of the target.

*

*

/

package fsst;

import sinkit.*;
import sinkit.data.*;
import sinkit.snd. *;
import java.util.*;

public class Target{

/1 instance vari abl es
private Battl eFi el dData battl eFi el d;
private TargetState state;
private double arrival Ti ne;
private Coordinate targetlLocation;
private String targetType;
private String nission;
private int sal voSi ze;
private int closeCalls;
private int hits;
private int hitsNeeded,;
private int hitsToDestroy;
private int hitsToNeutrali ze;
private int closeCallsToSuppress;
pri vate doubl e coll at er al DanageRadi us;
private doubl e coll at eral DanagePer cent age;
private Randomr;

/] constructor methods
public Target(){
arrival Ti me = Schedul e. get Si nili ne() ;
}

public Target (AO t heBox, Battl eFiel dData theBattl eFiel d){
state = Target St at e. UNSCATHED;
arrival Ti me = Schedul e. get Si nili me() ;
target Locati on = new Coordi nat e(t heBox. get RandonlLocation());
battleField = theBattl eFi el d;
target Type = battl eFi el d. get Tar get Type();
m ssion = battleFiel d. get FireM ssionType();
sal voSi ze = battl eFi el d. get Sal voSi ze(t ar get Type, m ssi on) ;
hi t sToDestroy = battl eFi el d. get Destroy(target Type);
hitsToNeutralize = battl eFiel d. getNeutralize(targetType);
cl oseCal | sToSuppress = battl eFi el d. get Suppress(target Type);
hi t sNeeded = battl eFi el d. get H t sNeeded(t ar get Type, m ssi on);
col | at eral DanageRadi us = battl eFi el d. get Col | at er al DamageRadi us() ;
col | at er al DamagePer centage = battl eFi el d. get Col | at er al DamagePer cent () ;

}

/1 class nethods
public double getArrival Tine(){return arrival Tine;}

public String getTargetState(){return state.toString();}

publ i c Coordi nate get Target Location(){return new Coordi nat e(targetLocation);}
public String getTarget Type(){return new String(targetType);}

public String getMssion(){return new String(m ssion);}

public int getSalvoSize(){return sal voSi ze;}

public int getH tsNeeded(){return hitsNeeded;}

public int getH ts(){return hits;}

107

public int getd oseCalls(){return closeCalls;}

publ i ¢ bool ean i sFireM ssi onSuccessful (Shoot er theShooter){
int burstRadi us = theShoot er. get Bur st Radi us();
doubl e m ssedBy;
for(int i=0;i<salvoSi ze;i++){
m ssedBy = (theShoot er. get Si ngl eShot Locat i on(new Coor di nat e(t ar get Location))).
di stanceFron(targetLocation);
if (m ssedBy <= bur st Radi us){
hi t s++;

}
if (mssedBy > battl eFi el d. get Col | at er al DamageRadi us()) {
if (battleFiel d. get RandomNunber () <batt! eFi el d. get Col | at eral DanagePer cent ()) {
batt| eFi el d.i ncreaseNunber Col | at er al DamageCausi ngRounds() ;
}

}
if ((mssedBy <= (2*burstRadi us))&&(m ssi on. equal s(" Suppress"))){
cl oseCal | s++;

}

}

setState();

i f (m ssion. equal s("Suppress")){
return (closeCall s>=hitsNeeded);

}
el se {

return (hits>=hitsNeeded);
}

}

public void setState(){
if (closeCalls>=cl oseCal | sToSuppr ess) {
state = Target St at e. SUPPRESSED;

}
if (hits>=hitsToNeutralize){
state = Target St at e. NEUTRALI ZED,

}
i f (hits>=hitsToDestroy){
state = Target St at e. DESTROYED;
}
}

public void setSal voSi ze(i nt newSal voSi ze) {
sal voSi ze = newSal voSi ze;
}

public String toString(){
return get Target Type() + " arrived at " + getArrival Time() + ",at |ocation:
this.get TargetLocation() + ". The mission was to: " + this.getMssion() +
The target is currently " + state.toString();

}
}
5. TargetState
/**
* Juan K Ul oa

* Thesis: FSST
* January 13, 2001
*
* <P> This class tracks the state of the target being engaged.
*

-~

package fsst;
public class Target Stat ef

public static final TargetState UNSCATHED= new Tar get St at e(" Unscat hed") ;
public static final TargetState SUPPRESSED = new Target St at e(" Suppressed") ;
public static final TargetState NEUTRALI ZED = new Target State("Neutralized");

108

public static final TargetState DESTROYED = new Tar get St at e(" Destroyed");
private String state;

protected TargetState(String theState){
state = new String(theState);
}

public String toString(){
return state;
}

6. TargetArrivalProcess
/**

* Juan K Ul oa

* Thesis: FSST
* January 12, 2001

<P> This class sinulates the arrival process of targets.

* %k F

*

/
package fsst;

import sinkit.*;
inport sinkit.data.*;

public class TgtArrival Process extends SinEntityBase {

/1l instance vari abl es
private int nunberArrivals;
private RandonVariate arrival Ti meGenerator;

/] constructor methods
public TgtArrival Process(String distribution, Object[] theParaneters, |ong seed){
arrival Ti meCenerator =
Randonfact ory. get RandonVar i at e(di stri buti on, t hePar anet ers, seed) ;

}

/1 instance nethods
public String getDi stribution(){return arrival Ti neGenerator.getd ass().get Nane();}

public void setParaneters(Cbject[] newParaneters){
arrival Ti meCGener at or . set Par anet er s(newPar anet er s) ;
}

public Ooject[] getParameters(){return arrival Ti meGenerator. getParanmeters();}
public int getNunberArrival s(){return nunberArrivals;}

public void doRun(){
doubl e tenp = arrival Ti meCenerator. generate();
if (tenp<0.0){
tenp = 0.0;

nunberArrivals = 0;
wai t Del ay(" Target Arrival ", tenp);
}

public void doTarget Arrival (){
doubl e tenp = arrival Ti meGenerator. generate();
if (tenp<0.0){
tenp = 0.0;
}
nunber Arri val s++;
wai t Del ay(" Target Arrival ", tenp);
}

public void reset(){

109

super.reset();
nunberArrivals = 0;

7. TargetServer2
/**
* Juan K Ul oa

* Thesis: FSST
* January 19, 2001

<P> This class inplenents the process of firing targets.

* ok % o

*

/

package fsst;

import sinkit.*;
import sinkit.data.*;
import java.util.*;

public class TgtServer2 extends SinEntityBase{

/1 instance vari abl es

/] paraneters
private int maxNunber Shooters;

/] state variables
private Vector queue = new Vector();
private int queueSize;
private Vector shooters;
private int nunber M ssi onRepeat s;
private int nunberAvail abl eShoot ers;
private int nunberFireM ssionsServed;
private int nunberM ssionsRej ect ed;
private int nunber Successful M ssi ons;
private int nunberUnsuccessful M ssi ons;
private AO box;
private Battl eFi el dData batt! eFi el dDat a;
private double[] weights;

/] constructor nethods
public Tgt Server2(Vector theShooters, AO theBox, BattleFi el dData theBattl eFi el dDat a,

doubl e[] theWei ghts){
battl eFi el dData = new Battl eFi el dDat a(t heBatt | eFi el dDat a) ;
box = new AQ(t heBox);

set Nunber Shoot er s(t heShoot ers. si ze()) ;
shooters = (Vector)theShooters. clone();
nunber Avai | abl eShoot ers = maxNunber Shoot er s;
for(int i=0;i<shooters.size();i++){
queue. add(new Li nkedList());

wei ghts = t heWi ghts;
}

/1 instance nethods
public void doTarget Arrival (){
Target newFireM ssion = new Tar get (box, batt!| eFi el dDat a) ;

Vect or whol sl nRange = new Vector();

int firer;

for(int i=0;i<shooters.size();i++){
if (((Shooter)shooters.get(i)).inRange(newrireM ssion)){

whol sl nRange. add(new I nteger(i));

}

f (whol sl nRange. si ze()>0) {
firer = get Shooter 1(whol sl nRange, newFi r eM ssi on) ;
if (firer>=0){
((Li nkedLi st) queue. get (firer)).add(newrireM ssion);
firePropertyChange("tgtslnQueue", queueSi ze, ++queueSi ze) ;
if (((LinkedList)queue.get(firer)).size() == 1){

110

}
i

wai t Del ay("FireM ssion", 0.0, new Integer(firer));

}

el se{
firePropertyChange("nunber M ssi onsRej ect ed", nunber M ssi onsRej ect ed,
++nunber M ssi onsRej ect ed) ;

}
}
el se {
firePropertyChange(" nunber M ssi onsRej ect ed", nunber M ssi onsRej ect ed,
++nunber M ssi onsRej ect ed) ;
}

}

public voi d doFireM ssion(lnteger theFirer){
int firer = theFirer.intValue();

Target thisFireMssion = (Target) ((LinkedList)queue.get(firer)).getFirst();
doubl e thisTimel nQueue = Schedul e. get Sinilime() - thisFireMssion.getArrival Tinme();
Vector paraneters = new Vector();
par anet er s. add(t hi sFi reM ssi on);
paranet ers. add(t heFirer);

firePropertyChange("tgtsl nQueue", queueSi ze, - - queueSi ze) ;

firePropertyChange(" nunber Avai | abl eShoot er s", nunber Avai | abl eShoot ers,

--nunber Avai | abl eShoot ers);

i f((((Shooter)shooters.get(firer)).getNunber Rounds() <
t hi sFireM ssi on. get Sal voSi ze()) & ((Shoot er) shoot ers. get (firer)). hasRounds())

)£
t hi sFi reM ssi on. set Sal voSi ze(((Shoot er) shooters. get (firer)).get Nunber Rounds())

/1 Check to see if shooter has enough rounds left to fire
if (!((Shooter)shooters.get(firer)).hasRounds()){
wai t Del ay(" Fi reM ssi onNever Fi red", 0. 0, paraneters);

/1 m ssion successful
else if (thisFireMssion.isFireM ssionSuccessful ((Shooter)shooters.get(firer))) {
((Shoot er)shooters. get(firer)).decrenent Rounds(thi sFireM ssion. get Sal voSi ze());
firePropertyChange("fireM ssi onQueueTi ne", nul |, new
Doubl e(t hi sTi nel nQueue)) ;
par anet er s. add(new Bool ean(true));
wai t Del ay(" EndFi reM ssi on", ((Shoot er) shooters. get (firer)).
get Servi ceTi me(t hi sFireM ssi on), paraneters);

/1 mssion unsuccessful and either the target flees or shooter out of ammo
else if ((battleFiel dData.didFlee())]|
(! ((Shoot er)shooters. get(firer)).hasRounds())){
((Shoot er)shooters. get(firer)).decrement Rounds(thi sFireM ssion. get Sal voSi ze());
firePropertyChange("fireM ssi onQueueTi ne", nul |, new
Doubl e(t hi sTi nel nQueue)) ;
par anet er s. add(new Bool ean(fal se));
wai t Del ay(" EndFi reM ssi on", ((Shoot er) shooters. get (firer)).
get Servi ceTi me(t hi sFireM ssion), paraneters);

// mssion unsucccessful, but target still available and shooter has ammo
el se {
firePropertyChange("nunber M ssi onRepeat s", nunber M ssi onRepeat s,
++nunber M ssi onRepeat s) ;
wai t Del ay(" Repeat Fi reM ssi on", ((Shoot er)shooters. get(firer)).
get Servi ceTi me(t hi sFi reM ssi on), paraneters);
}
}

public void doRepeat Fi reM ssi on(Vect or theParaneters){
Target thisFireMssion = (Target)theParaneters. get(0);
int firer = ((Integer)theParaneters.get(1)).intValue();
doubl e thisTimel nQueue = Schedul e. get Sinlime() - thisFireMssion.getArrival Tinme();
i f((((Shooter)shooters.get(firer)).getNunber Rounds()<
t hi sFi reM ssi on. get Sal voSi ze()) &(((Shoot er) shoot ers. get (firer)). hasRounds())){
t hi sFi reM ssi on. set Sal voSi ze(((Shoot er) shoot ers. get (firer)). get Nunber Rounds());
}

/1 Check to see if shooter has enough rounds left to fire the mssion
if (!((Shooter)shooters.get(firer)).hasRounds()){
firePropertyChange("fireM ssi onQueueTi ne", nul | , new Doubl e(t hi sTi nel nQueue)) ;

111

t hePar anet er s. add(new Bool ean(f al se));
wai t Del ay(" EndFi reM ssion", 0.0, t hePar anet ers);

/1 mssion successful

else if (thisFireMssion.isFireM ssionSuccessful ((Shooter)shooters.get(firer))) {
((Shoot er)shooters. get(firer)).decrenent Rounds(thi sFireM ssion. get Sal voSi ze());
firePropertyChange("fireM ssi onQueueTi ne", nul | , new Doubl e(t hi sTi nel nQueue)) ;
t hePar anet er s. add(new Bool ean(true));
wai t Del ay(" EndFi reM ssi on", ((Shoot er)shooters. get(firer)).
get Repeat Servi ceTi ne(t hi sFi reM ssion), t hePar anet ers);

/1 mssion unsuccessful and (target flees or shooter out of anm)

else if ((battleFieldData.didFlee())]|]
(! ((Shoot er)shooters.get(firer)).hasRounds())){
((Shoot er)shooters. get(firer)).decrenment Rounds(thi sFireM ssion. get Sal voSi ze());
firePropertyChange("fireM ssi onQueueTi ne", nul |, new Doubl e(t hi sTi nel nQueue));
t hePar anet er s. add(new Bool ean(fal se));
wai t Del ay(" EndFi reM ssi on", ((Shoot er) shooters. get (firer)).
get Repeat Ser vi ceTi ne(thi sFireM ssion), theParaneters);

/1 mssion unsuccessful and target still available

}

el se{
((Shoot er)shooters. get(firer)).decrenmentRounds(thi sFireM ssion. get Sal voSi ze());
wai t Del ay(" Repeat Fi reM ssi on", ((Shoot er)shooters. get(firer)).
get Repeat Ser vi ceTi ne(thi sFireM ssion), theParaneters);

publ i c voi d doEndFireM ssion(Vector theParaneters){

}

Target theFireM ssion = (Target)theParaneters. get(0);
int firer = ((Integer)theParaneters.get(1)).intValue();
bool ean success = ((Bool ean)theParaneters. get(2)).bool eanVal ue();
doubl e timel nSystem = Schedul e. get Si nili me() -t heFi reM ssion. get Arrival Tine();
((Li nkedLi st) queue. get(firer)).renoveFirst();
if (success){
firePropertyChange(" nunber Successf ul M ssi ons", nunber Successf ul M ssi ons,
++numnber Successf ul M ssi ons) ;

}
el se{
firePropertyChange(" nunber Unsuccessf ul M ssi ons", nunber Unsuccessf ul M ssi ons,
++nunber Unsuccessf ul M ssi ons) ;
}

firePropertyChange("total Fi reM ssionTine", null, new Doubl e(ti mel nSystemn));
firePropertyChange("nunber M ssi onsFi red", nunber Fi reM ssi onsServed,
++nunber Fi r eM ssi onsSer ved) ;
firePropertyChange("nunber Avai | abl eShoot er s", nunber Avai | abl eShoot er s,
++nunber Avai | abl eShoot ers) ;
if (((LinkedList)queue.get(firer)).size() > 0){

wai t Del ay("FireM ssion",0.0,new Integer(firer));
}

public void doFireM ssi onNever Fi red(Vect or theParaneters){

}

Target theFireM ssion = (Target)theParaneters. get(0);
int firer = ((Integer)theParaneters.get(1)).intValue();
for(int i=0;i<((LinkedList)queue.get(firer)).size();i++){
firePropertyChange(" nunber M ssi onsRej ect ed", nunber M ssi onsRej ect ed,
++nunber M ssi onsRej ect ed) ;

}
((Li nkedLi st) queue. get (firer)).clear();

public int getNunber Shooters(){return nmaxNunber Shoot ers; }

publ i ¢ void set Nunber Shoot er s(i nt nunber Shoot er s) {

}

maxNunber Shoot ers = nunber Shoot ers;

public int getNunberServed(){return nunberFireM ssionsServed;}

public int getNunberlnQueue(){return queueSi ze;}

112

public voi d addShoot er (Shoot er newshoot er) {
shoot er s. add(newShoot er) ;
gqueue. add(new Li nkedList());
firePropertyChange("nunber Avai | abl eShoot er s", nunber Avai | abl eShoot er s,
++nunber Avai | abl eShoot ers) ;
maxNunber Shoot er s++;

}

public void renmoveShoot er (i nt shoot er Number) {
int nunber M ssions = ((LinkedLi st)queue. get (shoot er Nunber)). si ze();
for(int i=0;i<nunberM ssions;i++){
/1 add the old targets
}

shoot er s. r enove(shoot er Nunber) ;

queue. r enove(shoot er Nunber) ;
firePropertyChange("nunber Avai | abl eShoot er s", nunber Avai | abl eShoot er s,
--nunber Avai | abl eShoot ers) ;

maxNunber Shoot ers--;

}

public int getShooter(Vector inRangeShooters, Target thisFireM ssion){
int firer = 0;
int tenp;
Shoot er thi sShooter;
Shoot er best Shoot er SoFar ;
doubl e t hi sShoot er D st ance;
doubl e best Shoot er SoFar Di st ance;
Vect or inRangeFA = new Vector();
Vect or i nRangeNSFS = new Vector();
I/ create vector of inRange shooters that have enough ammo and are FA
for(int i=0;i<inRangeShooters. size();i++){
tenp = ((Integer)inRangeShooters.get(i)).intValue();
t hi sShoot er = (Shoot er) shoot ers. get (t enp);
if (thisShooter.getPl atfornType().equal s("FieldArtillery")&&
(t hi sShoot er. get Nunber Rounds() >=t hi sFi reM ssi on. get Sal voSi ze())) {
i nRangeFA. add(new I nteger(tenp));
}
i f (thisShooter. getPlatfornilype().equal s("NSFS") &&
(t hi sShoot er . get Nunber Rounds() >=t hi sFi reM ssi on. get Sal voSi ze())){
i NRangeNSFS. add(new | nt eger (tenp));
}

/1 Use the FA assets first
i f (inRangeFA. size()>0){
firer = ((Integer)inRangeFA. get(0)).intValue();
for(int i=0;i<inRangeFA.size();i++){
temp = ((Integer)inRangeFA get(i)).intValue();
t hi sShoot er = (Shoot er) shooters. get (tenp);
t hi sShoot er Di st ance = (t hi sShoot er. get Shoot er Locati on()).
di st anceFron(thi sFi reM ssi on. get Tar get Location());
best Shoot er SoFar = (Shooter)shooters.get(firer);
best Shoot er SoFar Di st ance = (best Shoot er SoFar . get Shoot er Locati on()) .
di st anceFron{(t hi sFireM ssi on. get Tar get Location());
/1 use asset enough rounds and with shortest queue
i f ((((LinkedLi st)queue.get(tenp)).size()<=
((Li nkedLi st) queue. get(firer)).size())){
firer = tenp;

/1l use asset with lowest PERif all else is the same
el se if((((LinkedList)queue.get(tenp)).size()==
((Li nkedLi st)queue. get(firer)).size())&&
(t hi sShoot er. get PER() <best Shoot er SoFar . get PER())) {
firer = tenp;

/] use asset that is closest if all else is the same
el se if((((LinkedList)queue. get(tenp)).size()==
((Li nkedLi st) queue. get(firer)).size())&
(t hi sShoot er. get PER() <best Shoot er SoFar . get PER()) &&
(t hi sShoot er D st ance<best Shoot er SoFar D st ance)) {
firer = tenp;

113

/1

11

/1

11
/1

}

}
} .
return firer;

/1 Use the NSFS assets if no FA assets avail abl e
i f (i nRangeNSFS. si ze() >0) {
firer = ((Integer)inRangeNSFS. get (0)).i ntVal ue();
for(int i=0;i<i nRangeNSFS. si ze();i ++){
tenp = ((Integer)inRangeNSFS. get (i)).intValue();
t hi sShoot er = (Shoot er) shooters. get (tenp);
t hi sShoot er Di st ance = (t hi sShoot er. get Shoot er Locati on()).
di st anceFron(thi sFi reM ssi on. get Tar get Location());
best Shoot er SoFar = (Shoot er) shooters. get(firer);
best Shoot er SoFar D st ance = (best Shoot er SoFar . get Shoot er Locati on()) .
di st anceFron{(thi sFi reM ssi on. get Tar get Locati on());
use asset enough rounds and with shortest queue
if ((((LinkedList)queue.get(tenp)).size()<=
((Li nkedLi st) queue. get(firer)).size())){
firer = tenp;

use asset with lowest PERif all else is the sane
el se if((((LinkedList)queue.get(tenp)).size()==
((Li nkedLi st)queue. get (firer)).size())&&
(t hi sShoot er. get PER() <best Shoot er SoFar . get PER())) {
firer = tenp;

use asset that is closest if all else is the same

el se if((((LinkedList)queue.get(tenp)).size()==
((Li nkedLi st) queue. get(firer)).size())&
(t hi sShoot er. get PER() <best Shoot er SoFar . get PER()) &&
(t hi sShoot er Di st ance<best Shoot er SoFar Di st ance)) {

firer = tenp;
}
}

return firer;

if no firers have enough ammo, use asset with the nost ammo and reset sal voSize
to nunber of rounds avail abl e
firer =-1;
for(int i=0;i<inRangeShooters. size();i++){

tenp = ((Integer)inRangeShooters.get(i)).intValue();

t hi sShoot er = (Shoot er) shoot ers. get (t enp);

if (firer>=0){

best Shoot er SoFar = (Shoot er)shooters. get(firer);

el se{

best Shoot er SoFar = (Shoot er) shoot ers. get (tenp);
}
i

f ((thisShooter. hasRounds()) &
(t hi sShoot er. get Nunber Rounds() >best Shoot er SoFar . get Nunber Rounds())) {
firer = tenp;
t hi sFi reM ssi on. set Sal voSi ze(t hi sShoot er. get Nunber Rounds()) ;
}
}

return firer;

public int getShooterl(Vector inRangeShooters, Target thisFireM ssion){

/1

Shoot er t hi sShoot er;
Shoot er best Shoot er SoFar ;
Vect or i nRangeW t hEnoughAmmo = new Vector();
Vect or i nRangeNot EnoughAmmo = new Vector();
Vect or wei ght edShooters;
doubl e[] theVal ues;
doubl e shooterWrt h;
doubl e best Shooter = 0.0;
int tenp;
int firer = -1;
create vector of inRange shooters that have enough ammo
for(int i=0;i<inRangeShooters.size();i++){
tenp = ((Integer)inRangeShooters.get(i)).intValue();

114

t hi sShoot er = (Shoot er) shoot ers. get (t enp);
if (thisShooter.get Nunber Rounds()>=t hi sFi reM ssi on. get Sal voSi ze()) {
i nRangeW t hEnoughAmo. add(new | nt eger (tenp));

}
el se{

i nRangeNot EnoughAmo. add(new | nt eger (tenp));
}

}
i f (i nRangeW t hEnoughAmmo. si ze() >0) {
wei ght edShoot ers = new Vector();
t heVal ues = get Shoot er Best Wr st Val ues(i nRangeW t hEnoughAmmmo, t hi sFi reM ssi on) ;
/I {best Range, wor st Range, best PER, wor st PER, best Nunber Rounds, wor st Nunber Rounds} ;
for(int i=0;i<i nRangeW t hEnoughAmo. si ze() ;i ++){
tenp = ((Integer)i nRangeW t hEnoughAmmo. get (i)).i nt Val ue();
t hi sShoot er = (Shoot er) shoot ers. get (tenp);
doubl e range = thi sShooter. get Shoot er Locati on().
di st anceFron{(thi sFi reM ssi on. get Tar get Location());
doubl e per = thisShooter. get PER();
i nt nunmber Rounds = t hi sShoot er. get Nunber Rounds() ;
I/ shooter worth is function of range, PER nunber rounds, and platformtype
shooterWrth = (range-theVal ues[1])/ (theVal ues[0] -t heVal ues[1]) *wei ght s[0] +
(per -t heVal ues[3])/ (t heVal ues[2] -t heVal ues[3]) *wei ght s[1] +
(nunber Rounds- t heVal ues[5])/ (t heVal ues[4] -t heVal ues[5]) *wei ght s[2] ;
i f (thisShooter.getPlatfornflype().equals("FieldArtillery")){
shooterWrth += wei ghts[3];

}
if (thisShooter.getPlatforniype().equal s("NSFS")){
shooterWrth += wei ghts[4];

}
wei ght edShoot er s. add(new Doubl e(shoot erWrth));

for(int i=0;i<weightedShooters.size();i++){
shooterWrth = ((Doubl e) wei ght edShoot ers. get (i)). doubl eVal ue();
/1 System out . printl n(shoot erWrth);
i f (shooterWrth>best Shoot er) {
firer = ((Integer)i nRangeW t hEnoughAmo. get (i)).i ntVal ue();
best Shoot er = shoot erWrt h;
}

return firer;

el se{
for(int i=0;i<i nRangeNot EnoughAmmo. si ze(); i ++){
temp = ((Integer)inRangeShooters.get(i)).intValue();
t hi sShoot er = (Shoot er) shooters. get (tenp);
if (firer>=0){
best Shoot er SoFar = (Shoot er) shooters. get(firer);
}

el se{
best Shoot er SoFar = (Shoot er) shoot ers. get (tenp);

}
i f(thi sShoot er. get Nunmber Rounds() >best Shoot er SoFar . get Number Rounds()) {
firer = tenp;
t hi sFi reM ssi on. set Sal voSi ze(t hi sShoot er. get Nunber Rounds()) ;
}
}
return firer;
}
}

public int getNunmber RoundsCausi ngCol | at er al Damage() {
return battl eFi el dDat a. get Nunber Col | at er al DamageCausi ngRounds() ;
}

public doubl e[] get Shoot er Best Wr st Val ues(Vect or t heShooters, Target theTarget){
int tenp;
doubl e best Range = Doubl e. MAX_VALUE;
doubl e wor st Range = 0. 0;
doubl e best PER = Doubl e. MAX_VALUE;
doubl e wor st PER = 0. 0;
i nt best Nunmber Rounds = O;

115

i nt wor st Nunber Rounds = | nt eger. MAX_VALUE;
Shoot er current Shoot er;
for(int i=0;i<theShooters.size();i++){

tenp = ((Integer)theShooters.get(i)).intValue();

current Shooter = (Shoot er)shooters. get(tenp);

if ((currentShooter. get ShooterLocation()).

di st anceFron{(theTar get. get Target Locati on()) > wor st Range) {
wor st Range = (current Shoot er. get Shoot er Locati on()).
di st anceFron(theTar get . get Tar get Locati on());

if ((currentShooter. get ShooterLocation()).
di st anceFron{t heTar get . get Target Locati on()) < best Range){
best Range = (current Shoot er. get Shoot er Location()).
di st anceFron{t heTar get . get Tar get Location());

if (current Shoot er. get PER() >wor st PER) {
wor st PER = current Shoot er. get PER() ;

i f (current Shoot er. get PER() <best PER) {
best PER = current Shoot er. get PER() ;

}
i f (current Shoot er. get Nunber Rounds() >best Nunber Rounds) {
best Nunber Rounds = current Shoot er. get Nunber Rounds() ;

i f (current Shoot er. get Nunber Rounds() <wor st Nunber Rounds) {
wor st Nunber Rounds = current Shoot er. get Nunber Rounds() ;

i f (worst Range==best Range) {
wor st Range+=0. 1,

}
i f (worst PER==best PER) {
wor st PER+=0. 1;

i f (worstNunber Rounds==best Nunber Rounds) {
wor st Nunmber Rounds- =0. 1;

return new doubl e[] { best Range, wor st Range, best PER,
wor st PER, best Nurber Rounds, wor st Nunber Rounds};

}

public void reset(){
super.reset();
nunber M ssi onRepeats = 0;
firePropertyChange("nunber M ssi onRepeat s", | nt eger. M N_VALUE, nunber M ssi onRepeat s) ;
nunber Fi reM ssi onsServed = 0;

firePropertyChange("nunber M ssi onsFired", | nt eger. M N_VALUE, nunber Fi reM ssi onsSer ve

d);

nunber Unsuccessf ul M ssions = 0;

firePropertyChange("nunber Unsuccessful M ssi ons”, I nteger. M N_VALUE,
nunber Unsuccessf ul M ssi ons) ;

nunber Successful M ssi ons = 0;

firePropertyChange(" nunber Successful M ssi ons", I nteger. M N_VALUE,
nunber Successf ul M ssi ons) ;

nunber M ssi onsRej ected = 0;

firePropertyChange("nunber M ssi onsRej ected", | nt eger. M N_VALUE,
nunber M ssi onsRej ect ed) ;
nunber Avai | abl eShoot ers = maxNunber Shoot er s;
firePropertyChange(" nunber Avai | abl eShoot ers", | nt eger. M N_VALUE,
nunber Avai | abl eShoot ers) ;
queue. cl ear ();

for(int i=0;i<shooters.size();i++){

queue. add(new Li nkedLi st ());

firePropertyChange("tgtsl nQueue", | nt eger. M N_VALUE, queue. si ze());
firePropertyChange("fireM ssi onQueueTi ne", nul | , new Doubl e(0.0));
firePropertyChange("total FireM ssionTime", null, new Doubl e(0.0));

batt| eFi el dDat a. r eset Col | at er al DamageCausi ngRounds() ;

}
}

116

B. MAIN METHODS

1 FSST50Replications.java

/**

* Juan K Ul oa

* Thesis: FSST

* January 19, 2001
*

* <P>

*
**/

package fsst;

inport sinkit.*;

import sinkit.data.*;

import sinkit.snd. *;

inmport java.util.*;

inmport java.io.*;

i mport java.text. Deci mal Format;

public class FSST50Replications{

// main nethod
public static final int NUVREPLI CATI ONS = 50;
public static void main(String[] args){
Deci mal Format deci = new Deci nal For mat (" 0. 0000; - 0. 0000");
Properties props = new Properties();
try {
props. | oad(new Fil el nput Strean(args[0]));

}
catch (Fil eNot FoundException e) {Systemerr.printin(e);}
catch (I OCexception e) {Systemerr.printlin(e);}

/1 get COA data and CA
String theCOA = props. get("CQA").toString();
doubl e ca = Doubl e. par seDoubl e(props. get ("theCA").toString());
// get AO data
doubl e xLower Left = Doubl e. par seDoubl e(props. get ("xLowerLeft").toString())
doubl e yLower Left = Doubl e. par seDoubl e(props. get ("yLowerLeft").toString());
doubl e xUpper R ght = Doubl e. par seDoubl e(props. get ("xUpperR ght").toString()
doubl e yUpper R ght = Doubl e. par seDoubl e(props. get ("yUpperR ght").toString())
String xDist = props.get("xDist").toString();
doubl e xD st A = Doubl e. par seDoubl e(props. get ("xDi stA").toString());
doubl e xD st B = Doubl e. par seDoubl e(props. get ("xDi stB").toString());
String yDist = props.get("yDist").toString();
doubl e yD st Mean = Doubl e. par seDoubl e(props. get ("yD st Mean").toString());

1

);

/] instantiate AO
Coordi nate | owerLeft = new Coordi nat e(xLower Left, yLower Left);
Coor di nat e upper R ght = new Coor di nat e(xUpper Ri ght , yUpper Ri ght) ;
Obj ect[] xDistParaneters = new Object[]{new Doubl e(xD stA), new Doubl e(xDi stB)};
Obj ect[] yD stParanmeters = new bj ect[]{new Doubl e(yDi st Mean) };
AO box = new AQ(| ower Left, upper R ght, xDi st, xDi st Paraneters, yDi st, yDi st Paraneters);

/1 get the stop data
String stopEvent = props.get("stopEvent").toString();
int stopEvent Count = | nteger. parselnt(props.get("stopEventCount").toString());

/] get the Arrival Process data
String interarrival D stribution = props.get("arrivalDistribution").toString();
doubl e neanlnterarrival Tine =
Doubl e. par seDoubl e(props. get ("nmeanlnterarrival").toString());
int arrival Stream = | nteger. parselnt(props.get("arrival Stream').toString());

/1 instantiate the arrival Process
Tgt Arrival Process arrival = new TgtArrival Process(interarrival D stribution,

117

new Qoject[] {new
Doubl e(neanl nterarrival Ti me) }, Randontt r eam STREAM arri val Streani);

/1 get the Shooter data
i nt nunber Shooters = | nteger. parsel nt(props. get("nunber Shooters").toString());
doubl e neanProjectileVelocity =
Doubl e. par seDoubl e(props. get ("nmeanProj ectil eVelocity").toString());
String[] platfornType = new String[nunber Shoot ers] ;
String[] acquireServiceD stribution = new String[nunber Shoot ers] ;
doubl e[] neanAcquirel nterservice = new doubl e[nhunber Shoot ers] ;
doubl e[] sigmaAcquire = new doubl e[nunber Shoot ers] ;
String[] firingServiceD stribution = new String[nunber Shoot ers];
doubl e[] meanFiringl nterservice = new doubl e[nunber Shoot ers] ;
doubl e[] signmaFiring = new doubl e[nunber Shoot ers] ;
doubl e[] maxRateO Fire = new doubl e[nunber Shoot er s] ;
doubl e[] thePER = new doubl e[nunber Shoot er s] ;
doubl e[] thePED = new doubl e[nunber Shoot er s] ;
doubl e[] shoot er XCoord = new doubl e[nunber Shoot er s] ;
doubl e[] shoot er YCoord = new doubl e[nunber Shoot er s] ;
int[] acquireServerStream = new i nt [nunber Shoot er s] ;
int[] firingServerStream = new i nt[nunber Shoot ers];
int[] nunmber Rounds = new i nt [nunber Shoot ers] ;
int[] nunberQns = new int[nunber Shoot ers];
int[] shooterRange = new i nt[nunber Shoot ers] ;
int[] burstRadi us = new i nt[nunber Shoot ers];
Shoot er[] aShooter = new Shoot er [nunber Shoot ers] ;

for(int i=0;i<nunberShooters;i++){
pl atfornType[i] = props.get("platfornType"+(i+1)).toString();
acquireServiceDi stribution[i] =
props. get ("acquireServi ceDi stribution"+(i+1)).toString();
neanAcqui rel nterservice[i] =
Doubl e. par seDoubl e(props. get (" meanAcqui rel nterservice"+(i+1)).toString());
si gmaAcquire[i] = Doubl e. par seDoubl e(props. get ("si gnaAcquire"+(i+1)).toString());
firingServiceDistribution[i] =
props.get ("firingServiceDi stribution"+(i+1)).toString();
meanFi ringlnterservice[i] =
Doubl e. par seDoubl e(props. get ("nmeanFiringl nterservice"+(i+1)).toString());
sigmaFiring[i] = Doubl e. parseDoubl e(props. get ("sigmaFiring"+(i+1)).toString());
maxRateO Fire[i] =
Doubl e. par seDoubl e(props. get ("maxRateOf Fire"+(i +1)).toString());
thePER[i] = Doubl e. par seDoubl e(props. get ("t hePER'+(i +1)).toString());
thePEDi] = Doubl e. par seDoubl e(props. get ("thePED"'+(i +1)).toString());
shoot er XCoord[i] =
Doubl e. par seDoubl e(props. get (" shoot er XCoord" +(i +1)).toString());
shoot er YCoord[i] =
Doubl e. par seDoubl e(props. get ("shoot er YCoord" +(i +1)).toString());
acquireServerStreanfi] =
I nt eger . par sel nt (props. get ("acqui reServer Stream +(i +1)).toString());
firingServerStreanfi] =
I nt eger. parsel nt (props. get("firingServerStrean+(i+1)).toString());
nunber Rounds[i] = Integer. parselnt(props.get("nunber Rounds"+(i+1)).toString());
nunmber GQuns[i] = Integer. parselnt(props.get("nunmber@ns"+(i+1)).toString());
shoot erRange[i] = Integer. parselnt(props.get("shooterRange"+(i+1)).toString());
burstRadi us[i] = Integer. parselnt(props.get("burstRadius"+(i+1)).toString());
/'l instantiate the shooters
ashooter[i] = new Shoot er (new Coordi nat e(shoot er XCoord[i], shoot er YCoord[i]),
shooterRange[i],thePERi],thePEQi], acquireServiceD stribution[i],
new Obj ect[] {new Doubl e(neanAcquirelnterservice[i]),
new Doubl e(si gmaAcquire[i])},firingServiceDi stribution[i], new (oject][]
{new Doubl e(neanFiringlnterservice[i]), new Doubl e(sigmaFiring[i])},
maxRat eOf Fire[i], RandonSt ream STREAM firingServerStreanfi]],
Randonft r eam STREAM acqui reServer Streanji]], nunber Rounds[i],
bur st Radi us[i], meanProjectil eVel ocity, platfornType[i], nunberGuns[i]);

/] instantiate the Battl eFi el dData
doubl e fleeProbability =
Doubl e. par seDoubl e(props. get ("fl eeProbability").toString());
int fleeStream = Integer.parselnt(props.get("fleeStreant).toString());
doubl e col | at er al DamageRadi us =

118

Doubl e. par seDoubl e(props. get ("col | at er al DamageRadi us").toString());
doubl e col | at er al DamagePer cent =

Doubl e. par seDoubl e(props. get ("col | at er al DamagePercent").toString());
doubl e percent Arnor =

Doubl e. par seDoubl e(props. get ("percent Armor").toString());
doubl e percentlInfantrylnCpen =

Doubl e. par seDoubl e(props. get (" percent | nfantryl nOpen").toString());
doubl e percentlnfantrybDugln =

Doubl e. par seDoubl e(props. get ("percent | nfantrybugln").toString());
doubl e percent Arnmor edPC =

Doubl e. par seDoubl e(props. get (" percent ArmoredPC') . toString());
doubl e percent Li ght Ski nVehicle =

Doubl e. par seDoubl e(props. get (" per cent Li ght Ski nVehicle").toString());

int destroyArnor = Integer.parselnt(props.get("destroyArnor").toString());
int destroyArnorSalvo =

I nt eger . par sel nt (props. get ("destroyArnor Sal vo").toString());
int neutralizeArnmor = Integer. parselnt(props.get("neutralizeArnmor").toString());
int neutralizeArnorSalvo =

I nt eger . par sel nt (props. get ("neutralizeArnorSalvo").toString());

int suppressArnor = | nteger.parselnt(props.get("suppressArnor").toString());
int suppressArnorSalvo =

I nt eger . par sel nt (props. get ("suppressArnorSal vo").toString());

int destroyll O = Integer. parselnt(props.get("destroyll O').toString());
int destroyll OSal vo = I nteger. parselnt(props.get("destroyllCsalvo").toString());
int neutralizell O = Integer.parselnt(props.get("neutralizellQ).toString());
int neutralizell OSalvo =
I nteger. parsel nt (props. get("neutralizellCsalvo").toString());
int suppressl| O = Integer. parselnt(props.get("suppressi1O).toString());
int suppressl|CSal vo = I nteger. parselnt(props.get("suppressl|OSalvo").toString());

int destroylD = Integer.parselnt(props.get("destroylD").toString());
int destroyl D Sal vo = I nteger. parsel nt(props.get("destroyl D Sal vo").toString());
int neutralizelD = Integer.parselnt(props.get("neutralizelD").toString());

int neutralizelD Salvo =
I nt eger. parsel nt (props. get("neutralizel Dl Sal vo").toString());
int suppressi D = Integer. parselnt(props.get("suppressiD").toString());
int suppresslD Salvo = | nteger. parselnt(props.get("suppresslDl Salvo").toString());

int destroyAPC = | nteger. parsel nt(props. get("destroyAPC').toString());
int destroyAPCSal vo = | nteger. parsel nt(props. get("destroyAPCSal vo").toString());
int neutralizeAPC = I nteger. parselnt(props.get("neutralizeAPC').toString());
int neutralizeAPCSalvo =
I nt eger . parsel nt (props. get ("neutral i zeAPCSal vo").toString());
int suppressAPC = | nteger. parsel nt (props. get("suppressAPC').toString());
int suppressAPCSal vo = | nteger. parsel nt (props.get("suppressAPCSal vo").toString());

int destroyLSV = Integer.parselnt(props.get("destroyLSV').toString());
int destroyLSVSal vo = | nteger. parselnt(props. get("destroyLSVSal vo").toString());
int neutralizeLSV = Integer. parselnt(props.get("neutralizelLSV').toString());
int neutralizeLSVSal vo =
I nt eger. parsel nt (props. get("neutralizeLSVSal vo").toString());
int suppressLSV = | nteger. parsel nt(props.get("suppressLSV').toString());
int suppressLSVSal vo = | nteger. parsel nt (props.get("suppressLSVSal vo").toString());

doubl e percentDestroy = Doubl e. par seDoubl e(props. get (" percent Destroy").toString());
doubl e percentNeutralize =

Doubl e. par seDoubl e(props. get ("percent Neutralize").toString());
doubl e percent Suppress =

Doubl e. par seDoubl e(props. get (" per cent Suppress").toString());

/1 load Battl eFi el dData and shooters, instantiate the server
Battl eFiel dData battl eFiel dData = new Battl eFi el dDat a(per cent Ar nor, dest r oyAr nor,
dest r oyAr nor Sal vo, neutral i zeAr nor, neutral i zeAr nor Sal vo, suppr essAr nor,

suppr essAr nor Sal vo, per cent | nfantryl nQpen, destroyl | O destroyl | OSal vo, neutralizel |l Q
neutralizel | Gsal vo, suppressl | O suppressl | Gsal vo, per cent | nfant ryDugl n, destroyl DI,
destroyl Dl Sal vo, neutral i zel DI, neutral i zel Dl Sal vo, suppress! DI, suppressl| Dl Sal vo,
per cent Ar nor edPC, dest r oyAPC, dest r oyAPCSal vo, neut r al i zeAPC, neut r al i zeAPCSal vo,
suppr essAPC, suppr essAPCSal vo, per cent Li ght Ski nVehi cl e, dest r oyLSV, dest r oyLSVSal vo,

119

11
11
11
11
11
11
11
11

neutralizelLSV, neutralizeLSVSal vo, suppr essLSV, suppr essLSVSal vo, per cent Dest r oy,
percent Neutral i ze, per cent Suppress, fl eeProbabi lity,
Randontt ream STREAM f | eeStreani, col | at er al DanageRadi us, col | at er al DanagePer cent) ;

Vector theShooters = new Vector();
for(int i=0;i<nunberShooters;i++){
t heShoot er s. add(aShooter[i]);

}

doubl e[] theWi ghts = new doubl e[5] ;

t heWei ght s[0] Doubl e. par seDoubl e(props. get ("range").toString());

t heWei ght s[1] Doubl e. par seDoubl e(props. get ("thePER').toString());

t heWei ght s[2] Doubl e. par seDoubl e(props. get (" nunber Rounds").toString());

t heWi ght s[3] Doubl e. par seDoubl e(props. get("Fiel dArtillery").toString());
t heWei ght s[4] Doubl e. par seDoubl e(props. get ("NSFS").toString());

Tgt Server2 server = new Tgt Server 2(t heShoot ers, box, battl eFi el dData, t heWi ghts);

SinmpleStats fireM ssionQueueTi meStat =

new Sinpl eStats("fireM ssionQueueTi ne", Sanpl i ngType. TALLY);

npl eStats total Fi reM ssionTi meStat =

new Sinpl eStats("total FireM ssionTi ne", Sanpl i ngType. TALLY);

npl eStats tgtslnQueueStat =

new Si npl eStats("tgtsl nQueue", Sanpl i ngType. TI ME_VARYI NG ;

npl eStats nasStat =

new Si npl eSt at s(" nunber Avai | abl eShoot er s", Sanpl i ngType. TI ME_VARYI NG ;
npl eSt at s nunber Repeat M ssi onsStat =

new Si npl eSt at s(" nunber M ssi onRepeat s", Sanpl i ngType. TI ME_VARYI NG ;

npl eStats nunber M ssi onsFiredStat =

new Si npl eSt at s(" nunber M ssi onsFi red", Sanpl i ngType. TI ME_VARYI NG) ;

mpl eSt at s nunber Unsuccessful M ssionsStat =

new Si npl eSt at s(" nunber Unsuccessf ul M ssi ons", Sanpl i ngType. TI ME_VARYI NG ;
mpl eSt at s nunber Successful M ssionsStat =

new Si npl eSt at s(" nunber Successf ul M ssi ons", Sanpl i ngType. TI ME_VARYI NG) ;
nmpl eSt at s nunber M ssi onsRej ectedStat =

new Si npl eSt at s(" nunber M ssi onsRej ect ed", Sanpl i ngType. TI ME_VARYI NG ;

S

S

S

S

S

Si

Si

S

server. addPr oper t yChangelLi st ener (fi reM ssi onQueueTi neStat) ;
server. addPr opert yChangelLi stener (total Fi reM ssi onTi meStat) ;
server. addPropert yChangeli st ener (t gt sl nQueueStat) ;
server. addPr opert yChangelLi st ener (nasStat) ;

server . addPr oper t yChangeli st ener (nunber Repeat M ssi onsSt at) ;
server. addPr opert yChangeli st ener (nunber M ssi onsFiredStat) ;
server. addPr oper t yChangeli st ener (nunber Unsuccessful M ssi onsStat);
server. addPr opert yChangeli st ener (nunber Successful M ssionsStat) ;
server . addPr oper t yChangelLi st ener (nunber M ssi onsRej ect edStat) ;

arrival . addSi nEvent Li st ener (server);
Schedul e. st opOnEvent (st opEvent , st opEvent Count) ;
Schedul e. set Ver bose(f al se);

FMI = Avg FM ti me
NAS = Nunber avail abl e shooters

PF

= Percentage of nmissions fired

TPS = Total percent of m ssions successful

PS
cD
CA

= O mssions fired, the percent of m ssions successful
Nunber of rds with collateral danage
percent age of area covered

COA = the coa designator

Systemout.println(" FMI't NASt PRt TPS\'t PS\t (D't CAt COA");
for (int i=0;i<NUVREPLI CATI ONS;i ++){
Schedul e.reset ();
fireM ssi onQueueTi neStat.reset();
total FireM ssionTimeStat.reset();
t gt sl nQueueStat. reset ();
nasStat.reset();
nunber Repeat M ssi onsSt at . reset () ;
nunber M ssi onsFi redSt at . reset () ;
nunmber Unsuccessful M ssionsStat.reset ();
nunber Successful M ssionsStat.reset ();
nunber M ssi onsRej ect edSt at . reset () ;
Schedul e. reset () ;

120

Schedul e. start Si nul ation();
double fnt = total FireM ssionTi meStat. get Mean();
doubl e nas = nasStat. get Mean();
doubl e pf = (double)(arrival.getNunberArrival s()-
nunber M ssi onsRej ect edSt at. get Count ())/arrival . get Nunber Arri val s();
doubl e tps = (doubl e) nunber Successful M ssi onsSt at. get Count ()/
(nunber M ssi onsFi redSt at . get Count () +nunber M ssi onsRej ect edSt at . get Count ()) ;
doubl e ps = (doubl e) nunber Successful M ssi onsSt at . get Count () /
nunber M ssi onsFi redSt at . get Count () ;
int cd = server. get Nunber RoundsCausi ngCol | at er al Darmage() ;
Systemout. println(deci.format(fnt) + "“\t" + deci.format(nas) + "\t" +

deci.format(pf) + "\t" + deci.format(tps) + "\t" + deci.format(ps) + "\t " +
cd + "\'t" + deci.format(ca) + "\t " + theCQA);
}
}
}
2. FSSTGetCA . java
/**
* Juan K Ul oa

* Thesis: FSST
* January 19, 2001
*
* <pP>
*
* %

~

package fsst;

import sinkit.*;

import sinkit.data.*;

import sinkit.snd. *;

inmport java.util.*;

inmport java.io.*;

i mport java.text. Deci mal Format;

public class FSSTGet CA{

// main nethod
public static void main(String[] args)({
Deci mal Format deci = new Deci nal For mat (" 0. 0000; - 0. 0000");
Properti es props = new Properties();
try {
props. | oad(new Fil el nput Strean(args[0]));

}
catch (Fil eNot FoundException e) {Systemerr.printin(e);}
catch (I Cexception e) {Systemerr.printlin(e);}

/1 get COA data
String theCOA = props.get("CQOA").toString();

I/l get AO data

doubl e xLower Left = Doubl e. par seDoubl e(props. get ("xLowerLeft").toString());
doubl e yLower Left = Doubl e. par seDoubl e(props. get ("yLowerLeft").toString());
doubl e xUpper R ght = Doubl e. par seDoubl e(pr ops. get ("xUpperRi ght").toString());
doubl e yUpper R ght = Doubl e. par seDoubl e(props. get ("yUpperR ght").toString())
String xDist = props.get("xDist").toString();
doubl e xD st A = Doubl e. par seDoubl e(props. get ("xDi stA").toString());
doubl e xDi st B = Doubl e. par seDoubl e(props. get ("xDi stB").toString());

/1 String yDist = props.get("yDist").toString();

/1 doubl e yD st Mean = Doubl e. par seDoubl e(props. get ("yD st Mean").toString());
String yDi st = props.get("yDistl1").toString();
doubl e yDi st A = Doubl e. par seDoubl e(props. get ("yDi stA").toString());
doubl e yDi st B = Doubl e. par seDoubl e(props. get ("yDi stB").toString());

/] instantiate AO
Coordi nate | owerlLeft = new Coordi nate(xLowerLeft,ylLowerLeft);
Coor di nat e upper R ght = new Coor di nat e(xUpper R ght, yUpper R ght) ;

121

oj ect[] xDi stParanmeters = new bj ect[]{new Doubl e(xD stA), new Doubl e(xDi stB)};

1 bj ect[] yD stParameters = new (bj ect[]{new Doubl e(yDi st Mean)};
Cbj ect[] yD stParanmeters = new bj ect[]{new Doubl e(yDi stA), new Doubl e(yDi stB)};
AO box = new AQ(| ower Left, upper R ght, xDi st, xDi st Paraneters, yDi st, yDi st Paraneters);

/1 get the stop data
String stopEvent = props.get("stopEvent").toString();
int stopEvent Count = Integer.parselnt(props.get("stopEventCount").toString());

/1 get the Arrival Process data
String interarrival Distribution = props.get("arrivalDistribution").toString();
doubl e neanlnterarrival Tine =
Doubl e. par seDoubl e(props. get ("neanlnterarrival").toString());
int arrival Stream = | nteger. parselnt(props.get("arrival Streant').toString());

/1 instantiate the arrival Process
Tgt Arrival Process arrival = new TgtArrival Process(interarrival D stribution,
new Object[] {new
Doubl e(neanl nterarrival Ti ne) }, Randontt ream STREAM arri val Streanj);

/1 get the Shooter data
i nt nunber Shooters = | nteger. parsel nt (props. get ("nunber Shooters").toString());
doubl e meanProj ectileVelocity =
Doubl e. par seDoubl e(props. get ("nmeanProj ectil eVel ocity").toString());
String[] platforniType = new String[nunmber Shoot ers];
String[] acquireServiceD stribution = new String[nunber Shoot ers];
doubl e[] neanAcquirel nterservice = new doubl e[nunber Shoot ers] ;
doubl e[] sigmaAcquire = new doubl e[nunber Shoot er s] ;
String[] firingServiceD stribution = new String[nunber Shoot ers] ;
doubl e[] meanFiringlnterservice = new doubl e[nunber Shoot er s] ;
doubl e[] sigmaFiring = new doubl e[nunber Shoot er s] ;
doubl e[] maxRateO Fire = new doubl e[nunber Shoot er s] ;
doubl e[] thePER = new doubl e[nunber Shoot er s] ;
doubl e[] thePED = new doubl e[nunber Shoot er s] ;
doubl e[] shoot er XCoord = new doubl e[nunber Shoot er s] ;
doubl e[] shoot er YCoord = new doubl e[nunber Shoot er s] ;
int[] acquireServerStream = new i nt [nunber Shoot ers];
int[] firingServerStream = new i nt[nunber Shoot ers];
int[] nunmber Rounds = new i nt [nunber Shoot ers] ;
int[] nunber@Quns = new i nt [nunber Shoot ers];
int[] shooterRange = new i nt[nunber Shoot ers] ;
int[] burstRadius = new int[nunber Shoot ers];
Shoot er[] aShooter = new Shoot er [nunber Shoot ers] ;

for(int i=0;i<nunberShooters;i++){
pl atfornType[i] = props.get("platfornilype"+(i+1)).toString();
acquireServiceDi stribution[i] =
props. get ("acquireServiceDi stribution"+(i+1)).toString();
nmeanAcqui rel nterservice[i] =
Doubl e. par seDoubl e(props. get (" meanAcquirel nterservice"+(i+1)).toString());
si gmaAcquire[i] = Doubl e. parseDoubl e(props. get ("signmaAcquire"+(i+1)).toString());
firingServiceDistribution[i] =
props. get ("firingServiceDistribution"+(i+1)).toString();
meanFiringlnterservice[i] =
Doubl e. par seDoubl e(props. get (" neanFiringl nterservice"+(i+1)).toString());
sigmaFiring[i] = Doubl e. par seDoubl e(props. get ("si gmaFiring"+(i+1)).toString());
maxRateOFire[i] =
Doubl e. par seDoubl e(props. get ("maxRateOf Fire"+(i +1)).toString());
thePER[i] = Doubl e. parseDoubl e(props. get ("thePER'+(i +1)).toString());
thePED i] = Doubl e. par seDoubl e(props. get ("thePED"'+(i +1)).toString());
shoot er XCoord[i] =
Doubl e. par seDoubl e(props. get (" shoot er XCoord" +(i +1)).toString());
shooterYCoord[i] =
Doubl e. par seDoubl e(props. get (" shoot er YCoor d"+(i +1)).toString());
acquireServerStreanfi] =
I nt eger . par sel nt (props. get ("acquireServer Stream' +(i +1)).toString());
firingServerStreanfi] =
I nteger. parselnt(props.get("firingServerStream +(i+1)).toString());

nunber Rounds[i] = | nteger. parsel nt(props. get ("nunber Rounds" +(i +1)).toString());
nunber Quns[i] = Integer. parselnt(props.get("nunber@ns"+(i+1)).toString());
shoot erRange[i] = Integer. parsel nt(props.get("shooterRange"+(i+1)).toString());

122

burstRadi us[i] = I nteger.parselnt(props.get("burstRadius"+(i+1)).toString());
/] instantiate the shooters
ashooter[i] = new Shoot er (new Coor di nat e(shoot er XCoord[i], shooter YCoord[i]),
shooterRange[i],thePERi],thePED], acquireServiceDi stribution[i],
new bject[] {new Doubl e(neanAcquirelnterservice[i]),
new Doubl e(si gmaAcquire[i])}, firingServiceDi stribution[i], new Cbject[]
{new Doubl e(neanFiringlnterservice[i]), new Doubl e(sigmaFiring[i])},
maxRat eOf Fire[i], Randontt ream STREAM firingServerStreanfi]],
Randon®t r eam STREAM acqui reServer Streanfi]], nunber Rounds[i],
bur st Radi us[i], meanProjectileVelocity, platforniType[i], nunberQns[i]);

/1l instantiate the BattleFiel dData
doubl e fleeProbability =
Doubl e. par seDoubl e(props. get ("fl eeProbability").toString());

int fleeStream = Integer. parselnt(props.get("fleeStreant).toString());
doubl e col | at er al DanageRadi us =

Doubl e. par seDoubl e(props. get ("col | at er al DanageRadi us").toString());
doubl e col | at er al DamagePer cent =

Doubl e. par seDoubl e(props. get ("col | at er al DamagePercent").toString());
doubl e percent Arnmor =

Doubl e. par seDoubl e(props. get ("percent Armor").toString());
doubl e percentlnfantrylnCpen =

Doubl e. par seDoubl e(props. get ("percent | nfantryl nGpen").toString());
doubl e percentlnfantrybugln =

Doubl e. par seDoubl e(props. get ("percent I nfantrybDugln").toString());
doubl e percent Arnor edPC =

Doubl e. par seDoubl e(props. get (" percent ArmoredPC') . toString());
doubl e percent Li ght Ski nVehicle =

Doubl e. par seDoubl e(props. get (" per cent Li ght Ski nVehicle").toString());

int destroyArnor = |nteger. parselnt(props.get("destroyArnor").toString());
int destroyArnorSalvo =
I nt eger . par sel nt (props. get ("destroyArnor Sal vo").toString());
int neutralizeArnmor = Integer. parselnt(props.get("neutralizeArnmor").toString());
int neutralizeArnorSalvo =
I nt eger. parsel nt (props. get("neutralizeArnorSalvo").toString());
int suppressArnor = |nteger. parselnt(props.get("suppressArnor").toString());
int suppressArnorSalvo =
I nt eger . par sel nt (props. get (" suppressArnor Sal vo").toString());

int destroyll O = Integer. parselnt(props.get("destroyll0).toString());
int destroyll GSal vo = Integer. parselnt(props.get("destroyllCsalvo").toString());
int neutralizell O = Integer.parselnt(props.get("neutralizellQ).toString());
int neutralizellGsalvo =
I nt eger. parsel nt (props. get("neutralizell GSal vo").toString());
int suppressl| O = Integer. parselnt(props.get("suppressi1O).toString());
int suppressl|Csalvo = I nteger. parselnt(props. get("suppressl|CSalvo").toString());

int destroyl Dl = Integer.parselnt(props.get("destroylD").toString());
int destroyl D Sal vo = I nteger. parselnt(props.get("destroyl D Sal vo").toString());
int neutralizelD = Integer.parselnt(props.get("neutralizelD").toString());

int neutralizelD Salvo =
I nt eger. parsel nt (props. get ("neutralizel D Sal vo").toString());
int suppressiD = Integer. parselnt(props.get("suppressiD").toString());
int suppresslD Salvo = | nteger. parsel nt(props.get("suppressl|Dl Salvo").toString());

int destroyAPC = | nteger. parsel nt (props. get ("destroyAPC').toString());

int destroyAPCSal vo = | nteger. parsel nt(props. get("destroyAPCSal vo").toString());
int neutralizeAPC = | nteger. parselnt(props.get("neutralizeAPC').toString());

int neutralizeAPCSal vo =

I nt eger . par sel nt (props. get ("neutral i zeAPCSal vo").toString());
int suppressAPC = | nteger. parsel nt (props.get("suppressAPC').toString());
int suppressAPCSal vo = | nteger. parsel nt (props. get ("suppressAPCSal vo").toString());

int destroyLSV = |nteger. parselnt(props.get(“destroyLSV').toString());

int destroyLSVSal vo = | nteger. parselnt(props.get("destroyLSVSal vo").toString());
int neutralizelLSV = Integer.parselnt(props.get("neutralizeLSV').toString());

int neutralizelLSVSal vo =

I nt eger . parsel nt (props. get("neutralizeLSVSal vo").toString());
int suppressLSV = I nteger. parselnt(props.get("suppressLSV').toString());

123

int suppressLSVSal vo = I nteger. parselnt(props. get("suppressLSVSal vo").toString());

doubl e percentDestroy = Doubl e. par seDoubl e(props. get ("percent Destroy").toString());
doubl e percentNeutralize =

Doubl e. par seDoubl e(props. get ("percentNeutralize").toString());

doubl e percent Suppress =

Doubl e. par seDoubl e(props. get (" per cent Suppress").toString());

/1l 1oad BattleFi el dData and shooters, instantiate the server
Battl eFi el dData battl eFi el dData = new Battl eFi el dDat a(per cent Ar nor, dest r oyAr nor,
destr oyAr nor Sal vo, neutral i zeAr nor, neutral i zeAr nor Sal vo, suppr essAr nor,

suppr essAr nor Sal vo, percent | nfantryl nQpen, destroyl | O destroyl | OSal vo, neutral i zel 1 Q

neutralizel | CSal vo, suppressl | O suppressl | OSal vo, percent | nf ant ryDugl n, destroyl DI,
destroyl Dl Sal vo, neutral i zel DI, neutral i zel DI Sal vo, suppressl D, suppressl Dl Sal vo,
per cent Ar nor edPC, dest r oyAPC, dest r oyAPCSal vo, neutral i zeAPC, neutral i zeAPCSal vo,
suppr essAPC, suppr essAPCSal vo, per cent Li ght Ski nVehi cl e, dest r oyLSV, dest r oyLSVSal vo,
neutralizelLSV, neutralizeLSVSal vo, suppressLSV, suppressLSVSal vo, per cent Dest r oy,
percent Neutral i ze, per cent Suppr ess, f| eeProbabi lity,

Randontt ream STREAM f | eeStreani, col | at er al DanageRadi us, col | at er al DanagePer cent) ;

Vector theShooters = new Vector();
for(int i=0;i<nunberShooters;i++){
t heShoot ers. add(asShooter[i]);

}

doubl e[] theWei ghts = new doubl e[5] ;

t heWei ght s[0] Doubl e. par seDoubl e(props. get ("range").toString());

t heWei ght s[1] Doubl e. par seDoubl e(props. get ("thePER").toString());

t heWei ght s[2] Doubl e. par seDoubl e(pr ops. get (" nunber Rounds").toString());

t heWi ght s[3] Doubl e. par seDoubl e(props. get("Fiel dArtillery").toString());
t heWei ght s[4] Doubl e. par seDoubl e(props. get ("NSFS").toString());

Tgt Server2 server = new Tgt Server 2(theShoot ers, box, battl eFi el dDat a, t heWi ghts) ;

Si npl eSt at s nunber M ssi onsFiredStat =
new Si npl eSt at s(" nunber M ssi onsFi red", Sanpl i ngType. TI ME_VARYI NG) ;
Si npl eSt at s nunber M ssi onsRej ect edStat =
new Si npl eSt at s(" nunber M ssi onsRej ect ed", Sanpl i ngType. TI ME_VARYI NG ;

server. addPr opert yChangeli st ener (nunber M ssi onsFi redSt at) ;
server. addPr oper t yChangelLi st ener (nunber M ssi onsRej ect edSt at) ;

arrival . addSi nEvent Li st ener (server);
Schedul e. st opOnEvent (st opEvent , st opEvent Count) ;
Schedul e. set Ver bose(f al se);

/1 theCA = percentage of area covered

}

Schedul e. reset () ;
nunber M ssi onsFiredStat.reset();
nunber M ssi onsRej ect edSt at . reset ();
Schedul e.reset ();
Schedul e. start Si nul ation();
doubl e theCA = (doubl e) nunber M ssi onsFi redSt at . get Count () /
(nurmber M ssi onsFi redSt at . get Count () +nunber M ssi onsRej ect edSt at . get Count ()) ;
Systemout.printin("The COA = " + theCOA + "\nThe CA =" + deci.format(theCA));

for(int i=0;i<nunberShooters;i++){
Systemout. println(aShooter[i].toString());
}

124

C. PROPERTIES FILE EXAMPLES

1 IBCT: Army with Reinforcing NSFS

Fire Support Simulation Tool
12 January 2001

#

#

#

File: fsstl. properties

Properties file for Miltiple Server Queueing Mdel wth Reneging
#
#

The CQA Desi gnat or

CA = 1D
theCA = 1.0

The AO properties
xLowerLeft = 0.0
yLower Left = 0.0
xUpper R ght = 24000. 0
yUpper Ri ght = 70000. 0
xDist = Uniform
xDistA =10.0

xDi st B = 24000. 0

yDi st = Exponenti al
yDi st Mean = 50000
yDistl = Uniform
yDistA=0.0

ybDi st B = 70000. 0

Arrival Process properties
arrival D stribution = Exponenti al
meanlnterarrival = 2.5

arrival Stream = 1

Battl eFi el dDat a
fleeProbability = 0.9
fleeStream = 2

col | at er al DanageRadi us = 400
col | at er al DanagePercent = 0.01

Probability of Target Type being:
percent Armor = 0.4
percentlnfantrylnCpen = 0.1
percentlnfantrybugln = 0.0
per cent ArnoredPC = 0.3
per cent Li ght Ski nVehicle = 0.2

Nunber of Rounds within Burst Radius of Target to Destroy:
destroyArnor = 18

destroyl 1O = 3
destroylDl = 6
destroyAPC = 12
destroyLSV = 9

Nunber of Rounds within Burst Radius of Target to Neutralize:
neutral i zeAr mor 12
neutralizell O
neutralizel D
neutral i zeAPC
neutral i zeLSV

AN

Nunber of Rounds within 2 * (Burst Radius) of Target to Suppress:
suppr essAr nor 1

suppressl |1 O
suppr essl| DI

1
1
suppressAPC = 1

125

suppressLSV = 1

Nunber of rounds to fire in a salvo against specific targets:
destroyArnor Sal vo = 36
neutralizeArnorSalvo = 24
suppressArnor Salvo = 3

destroyl I GSalvo = 6

neutralizell OSalvo = 3
suppressl | Csalvo = 3
destroyl Dl Salvo = 24
neutralizel D Salvo = 9
suppressl Dl Salvo = 3
dest royAPCSal vo = 24
neutral i zeAPCSal vo = 18
suppr essAPCSal vo = 3
destroyLSVSal vo = 18
neutral i zeLSVSal vo 12

suppressLSVSal vo = 3

Probability of m ssion being:
percent Destroy = 0.3
percentNeutralize = 0.5
per cent Suppress = 0.2

Shooter properties

projo velocity in x direction in mmnmn ((nvw*60)/sqrt(2))
meanProj ectil eVel ocity = 70000
nunber Shooters = 6

Shooterl properties (Pal adin Battery)
platfornlypel = FieldArtillery
acquireServiceDi stributionl = Nornal
meanAcqui rel nterservicel = 4.0
sigmaAcquirel = 0.75
firingServiceDistributionl
meanFiringlnterservicel =
sigmaFiringl = 0.2

in rounds per mnute
maxRateOFirel = 8

= Nor nal
1.0

thePER1L = 35

thePEDL = 2
shoot er XCoord1l = 6000. 0
shoot er YCoord1l = 30000.0

acquireServerStreanl = 3
firingServerStream = 4
nunber Rounds1l = 2520
shoot er Rangel 30000
bur st Radi us1 = 50

nunber Gunsl = 6

Shooter2 properties (Pal adin Battery)
platfornilype2 = FieldArtillery
acqui reServi ceDi stribution2 = Nornal
meanAcqui rel nterservice2 = 4.0
si gmaAcquire2 = 0.75
firingServiceDistribution2 = Nornal
meanFiringlnterservice2 = 1.0
signmaFiring2 = 0.2

in rounds per mnute
maxRateOFire2 = 8
thePER2 = 35
thePED2 = 2
shoot er XCoord2 = 12000. 0
shoot er YCoor d2 = 30000. 0
acqui reServerStrean2 = 5
firingServerStrean2 = 6

nunber Rounds2 = 2520

126

shoot er Range2 = 30000
bur st Radi us2 = 50
nunber Quns2 = 6

Shooter3 properties (Paladin Battery)
platfornlype3 = FieldArtillery

acqui reServi ceDi stribution3 = Nornal
meanAcqui rel nterservice3 = 4.0

si gmaAcquire3 = 0.75
firingServiceD stribution3 = Nornal
meanFiringlnterservice3 = 1.0
sigmaFiring3 = 0.2

in rounds per mnute
maxRateOfFire3 = 8
thePER3 = 35
thePED3 = 2

shoot er XCoor d3 = 18000. 0
shoot er YCoor d3 = 30000. 0
acquireServerStrean8 = 7
firingServerStrean8 = 8

nunber Rounds3 = 2520

shoot er Range3 = 30000

bur st Radi us3 = 50

nunber Quns3 = 6

Shooter4 properties
pl at f or MType4 = NSFS
acqui reServi ceDi stribution4d = Nornal
nmeanAcquirel nterserviced = 5.0
signmaAcquired4 = 1.0
firingServiceD stributiond4 = Nornal
meanFiringlnterserviced = 0.5
sigmaFiringd = 0.1

in rounds per minute
maxRat eOf Fire4 = 24
thePER4 = 100
thePED4 = 2
shoot er XCoor d4 = 6000. 0
shoot er YCoor d4 = - 40000. 0
acqui reServer Streamt = 9
firingServerStreamd = 0
nunber Rounds4 = 2400
shoot er Range4 = 112000
bur st Radi us4 = 75
nunber Guns4 = 2

Shooter5 properties
pl at f or nType5 = NSFS
acqui reServi ceDi stribution5 = Nornal
meanAcquirel nterservices = 5.0
sigmaAcquire5 = 1.0
firingServiceDi stribution5
meanFiringlnterservices =
signmaFiring5 = 0.1

in rounds per ninute
maxRateOf Fire5 = 24
thePER5 = 100
thePEDS = 2
shoot er XCoor d5 = 12000. 0
shoot er YCoor d5 = - 40000. 0
acquireServerStreanb = 1
firingServerStreant = 2
nunber Rounds5 = 2400
shoot er Range5 = 112000
bur st Radi us5 = 75
nunber Qins5 = 2

= Nor mal
0.5

Shooter6 properties

pl at f or nMType6 = NSFS

acqui reServiceD stribution6 = Nornal
meanAcqui rel nterservice6 = 5.0

127

sigmaAcquire6 = 1.0
firingServiceDi stribution6
meanFiringlnterservice6é =
sigmaFiringé = 0.1

in rounds per mnute
maxRateOr Fire6 = 24
thePER6 = 100
thePED6 = 2
shoot er XCoor d6 = 18000. 0
shoot er YCoor d6 = - 40000. 0
acquireServerStreant = 4
firingServerStreant = 5
nunber Rounds6 = 2400
shoot er Range6 = 112000
bur st Radi us6 = 75
nunber Guns6 = 2

the Wights

range = 0.125

thePER = 0. 125

nunber Rounds = .5
FieldArtillery = 0.25
NSFS = 0. 00

Run execute properties
st opEvent = Target Arrival
st opEvent Count = 425

2. FCS: Army with Reinforcing NSFS

12 January 2001

File: fsstl. properties

H O HHHHHFH

The CQA Desi gnat or

CA = 2D
theCA = 1.0

The AO properties
xLower Left = 0.0
yLower Left = 0.0
xUpper R ght = 50000. 0
yUpper R ght = 120000. 0
xDist = Uniform
xDistA =0.0

xDi st B = 50000. 0

yD st = Exponenti al

yDi st Mean = 80000

yDistl = Uniform
yDistA = 0.0
yDi st B = 120000. 0

Arrival Process properties

0.

Nor nmal
5

Fire Support Sinulation Tool

Properties file for Miltiple Server Queuei ng Mdel

arrival Distribution = Exponenti al

neanl nterarrival = 2.5
arrival Stream= 1

Battl eFi el dDat a
fleeProbability = 0.9
fleeStream = 2

col | at er al DamageRadi us = 400
col | at er al DanagePer cent = 0. 01

Probability of Target Type being:

wi t h Renegi ng

percent Arnmor = 0.4
percentInfantrylnCpen = 0.1
percentlnfantrybugln = 0.0
per cent ArnoredPC = 0.3

per cent Li ght Ski nVehicle = 0.2

Nunber of Rounds within Burst Radius of Target to Destroy:

destroyArnor = 18
destroyl 1O = 3
destroylDl = 6
destroyAPC = 12
destroyLSV = 9

Nunber of Rounds within Burst Radius of Target to Neutralize:
neutralizeArmor = 12
neutralizell O
neutralizel D
neutral i zeAPC
neutral i zeLSV

o OhAN|

Nunber of Rounds within 2 * (Burst Radius) of Target to Suppress:
suppr essAr nor 1

suppressl 1O =
suppr essl| DI
suppr essAPC
suppr essLSV

RPRERP

Nunber of rounds to fire in a salvo against specific targets:
destroyArnor Sal vo = 18
neutral i zeArmor Sal vo = 12
suppressArnor Salvo = 3
destroyl I Osalvo = 3
neutralizell OSalvo = 3
suppressl | Csalvo = 3

destroyl Dl Salvo = 6
neutralizel Dl Salvo = 4
suppressl Dl Salvo = 3

destroyAPCSal vo = 12
neutral i zeAPCSal vo = 9

suppr essAPCSal vo = 3

destroyLSvSalvo = 9
neutralizeLSVSalvo = 6
suppressLSVSal vo = 3

Probability of m ssion being:
percent Destroy = 0.3
percentNeutralize = 0.5
per cent Suppress = 0.2
Shooter properties

projo velocity in x direction in mnmn ((nvw*60)/sqrt(2))
nmeanProj ectil eVel ocity = 100000
number Shooters = 6

Shooterl properties (Crusader Battery)
platfornlypel = FieldArtillery
acqui reServi ceDi stributionl = Nornal
meanAcqui rel nterservicel = 2.0
si gmaAcquirel = 0.25
firingServiceDistributionl = Nornal
meanFiringlnterservicel = 0.25
sigmaFiringl = 0.05

in rounds per mnute
maxRateOf Firel = 12
thePERL = 1
thePEDL = 1
shoot er XCoord1 = 12500. 0

129

shoot er YCoord1 = 70000. 0
acquireServerStreaml = 3
firingServerStreaml = 4
nunber Rounds1l = 2520
shoot er Rangel = 45000
bur st Radi us1 = 50

nunber Qunsl = 4

Shooter2 properties (Crusader Battery)

platfornilype2 = FieldArtillery

acqui reServi ceDi stri bution2

Nor nal

meanAcqui rel nterservice2 = 2.0

si gmaAcquire2 = 0.25

firingServiceDi stribution2

meanFi ri ngl nterservi ce2
sigmaFiring2 = 0.05

in rounds per mnute
maxRateOfFFire2 = 12
thePERZ2 = 1

thePED2 = 1

shoot er XCoor d2 = 25000. 0
shoot er YCoor d2 = 70000. 0
acquireServerStrean2 = 5
firingServerStrean? = 6
nunber Rounds2 = 2520
shoot er Range2 = 45000
bur st Radi us2 = 50

nunber Quns2 = 4

Shooter3 properties (Cusader Battery)

0.

Nor nal
25

platfornilype3 = FieldArtillery

acqui reServi ceDi stri bution3

Nor mal

meanAcqui rel nterservice3 = 2.0

si gmaAcquire3 = 0.25

firingServiceDistribution3

meanFi ri ngl nterservice3
sigmaFiring3 = 0.05

in rounds per mnute
maxRat eOf Fire3 = 12

thePER3 = 1
thePED3 = 1
shoot er XCoor d3 = 37500. 0
shoot er YCoor d3 = 70000. 0

acquireServerStrean8 = 7
firingServerStrean8 = 8
nunber Rounds3 = 2520
shoot er Range3 = 45000
bur st Radi us3 = 50

number Quns3 = 4

Shooter4 properties
pl at f ornType4 = NSFS

acqui reServi ceDi stribution4

meanAcqui rel nterserviced4 =
signmaAcquired4 = 0.5

firingServiceDi stribution4

meanFiringlnterservice4d =
signmaFiringd = 0.1

in rounds per ninute
maxRateOf Fire4 = 24
thePER4 = 10
thePED4 = 2
shoot er XCoor d4 = 6000. 0
shoot er YCoor d4 = - 40000. 0
acqui reServerStreamt = 9
firingServerStreamd = 0
nunber Rounds4 = 2400
shoot er Range4 = 162000
bur st Radi us4 = 75
nunber Quns4 = 2

Nor mal

5

Nor mal
5

130

Shooter5 properties
pl at f or nType5 = NSFS
acqui reServi ceDi stribution5 = Nor mal
meanAcqui rel nterservice5 = 2.5
sigmaAcquire5 = 0.5
firingServiceDistribution5
meanFiringlnterservices =
sigmaFirings = 0.1

in rounds per mnute
maxRateOfFFire5 = 24
thePERS = 10
thePEDS = 2
shoot er XCoor d5 = 12000. 0
shoot er YCoor d5 = - 40000. 0
acquireServerStreant = 1
firingServerStreanb = 2
nunber Rounds5 = 2400
shoot er Range5 = 162000
bur st Radi us5 = 75
nunber Quns5 = 2

= Nor nal
0.5

Shooter6 properties
pl at f or MType6 = NSFS
acqui reServi ceDi stribution6é = Nornal
nmeanAcquirel nterserviceé = 2.5
si gnaAcquire6 = 0.5
firingServiceDistribution6 = Normal
meanFiringlnterservice6 = 0.5
sigmaFiringé = 0.1

in rounds per nminute
maxRat eCf Fire6 = 24
thePER6 = 10

thePED6 = 2
shoot er XCoor d6 = 18000. 0
shoot er YCoor d6 = - 40000. 0

acqui reServer Streant = 4
firingServerStreant = 5
nunber Rounds6 = 2400
shoot er Range6 = 162000
bur st Radi us6é = 75

nunber GQuns6 = 2

the Wights

range = 0.125

thePER = 0. 125

nunber Rounds = .5
FieldArtillery = 0.25
NSFS = 0. 00

Run execute properties

st opEvent = Target Arrival
st opEvent Count = 425

131

THISPAGE INTENTIONALLY LEFT BLANK

132

BIBLIOGRAPHY

FM 100-5, “Operations,” Headquarters, Department of the Army, Washington, D.C., 14
June 1993.

United States Army, Weapon Systems, United States Army 1999, DIANA Publishing
Company, 1999.

Johns Hopkins University/Applied Physics Lab, Task Statement for NSFS Requirements
for US Army Future Combat System Objective Force, 08 March 2000, JHU/APL
Proprietary.

JE. Rhodes - United States Marine Corps, Memorandum to the Chief of Naval
Operations from the United States Marine Corps on Naval Surface Fire Support
Requirements for Operational Maneuver from the Sea— 1999, 16 June 1999.

Sean D. Naylor, “Next up: Looking beyond Force XXI Army’s newest project takes
tactical look at warfare inthe years between 2010 and 2025,” Army Times, 10 June 1996,
p. 18.

Brigadier Genera Edward T. Buckley Jr. — US Army, “Army After Next Technology:
Forging Possibilities into Redlity,” available a http://www-cgsc-
army.mil/milrev/English/MarA pr98/buckley.htm; Internet; accessed 21 November 2000.

Colonel Michael Mehaffey — US Army, “Vanguard of the Objective Force,” available at
http://www-cgsc-army.mil/milrev/English/SepOct00/meha.htm; Internet; accessed 15
November 2000.

Major General Joseph M. Cosumano J. — US Army, “Transforming the Army to a Full
Spectrum Force,” available at http://www.tradoc.army.mil/transformation...ges/
transforming_the army_to_a full_.htm; Internet; accessed 20 November 2000.

Army Chief of Staff General Eric K. Shinseki, “Army Vision address at Reserve Officers
Association Mid-Winter Conference 1999, available at http://jwadweb/abig/5.htm; JHU
Intranet, accessed 15 November 2000.

Army Chief of Staff General Eric K. Shinseki, “Statement on Army Readiness to 106"
Congress,” available at http://gopher .house.gov/hasc/testimony/106thcongress/00-02-
10shinseki.htm; Internet; accessed 20 November 2000.

Army Chief of Staff General Eric K. Shinseki, “ Statement of Army Vision,” available at
http://www.senate.gov/~appropriations/def ense/testimony/shinseki.htm; Internet;
accessed 20 November 2000.

Crusader 155MM, The WebSite for Defence Industries — Army, avalable at
http://www.army- technol ogy.com/proj ects/crusader/

133

Padadin 155MM, The WebSite for Defence Industries — Army, available at
http://www.army- technol ogy.com/proj ects/pal adin/

A.D. Zimm, R.P. O’'Neil, D.W. Kerchner, and E.A. Smith, “Draft - Naval Requirements
and Capabilities Study,” 13 January 2000, Johns Hopkins University Applied Physics
Lab., pp. 65-72.

Raymond Lisewski and Edward C. Whitmann, “DD21: A New Direction in Warship
Acquisition,” Paper on genesis of DD-21 operationa requirements, May 2000, available
at http://dd21.crane.navy.mil/pdf%20filesDD21Whitman.pdf, accessed 20 November
2000.

Le, Hung B., “Advanced Naval Surface Fire Support Weapon Employment Against
Mobile Targets.” Masters Thesis, Naval Postgraduate School, December 1999.

Armstrong, James E., SE401/SE402, Introduction to Systems Design, Course Notes, West
Point, New Y ork: Department of Systems Engineering, 1999.

Aveill M. Law and W. David Kelton, Smulation Modeling and Analysis, 3d ed.,
(Boston: McGraw-Hill, 2000).

G.E.P. Box, W.G. Hunter, and J.S. Hunter, Statistics for Experimenters, An Introduction
to Design, Data Analysis, and Model Building, (New Y ork: John Wiley and Sons, 1978).

Jay L. Devore, Probability and Statistics for Engineering and the Sciences, 4" ed.,
(Pacific Grove: Duxbury Press, 1995).

Douglas C. Montgomery, George C. Runger, and Norma F. Hubele, Engineering
Satistics, (New York: John Wiley and Sons, 1998).

John R. Canada and William G. Sullivan, Economic Multiattribute Evaluation of
Advanced Manufacturing Systems, (Englewood Cliffs: Prentice Hall, 1989).

James N. Eagle, 1, Radidly Fleeing Target Animation in MATLAB, avallable at:
http://spica.or.nps.navy.mil/searchdocs/demos/rad flee norm.ani.gif, accessed 25 April
2001.

Stork, Kurt A., “Sensors in Object Oriented Discrete Event Smulation.” Masters Thesis,
Naval Postgraduate School, September 1996.

134

INITIAL DISTRIBUTION LIST

Defense TechniCal INformMationN CaNterccceeeeeeeeeeeeeeee e eeeee e ee e e e e e e e e e e aeeeaeaeaeeeseeeaeaeens
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

Dudley KNOX Library........ccocieeeiieie e see st
Naval Postgraduate School

411 Dyer Road

Monterey, CA 93943-5101

Mr. EAWard A. SIMYEN.....ooee e e
Joint Warfare Analysis Department, JHU/APL

Johns Hopkins Road

Laurel, Maryland 20723-6099

M. JONN F. KBANE.....ceiieiciiee ettt
Joint Warfare Analysis Department, JHU/APL

Johns Hopkins Road

Laurel, Maryland 20723-6099

Mr. SEEPhEN M. OrlOff ... e
Joint Warfare Analysis Department, JHU/APL

Johns Hopkins Road

Laurel, Maryland 20723-6099

Lieutenant Colonel Eugene P. Pallo, Pccoveoevieieeie e
Department of Operations Research

Naval Postgraduate School

Monterey, California 93943-5000

Professor Arnold H. BUSS. BU........cociiiiiiniinieiene e
Department of Operations Research

Naval Postgraduate School

Monterey, California 93943-5000

MG Or JUAN K. UTOA........ceiieiicieie et ae e

113 Wildplum Road
Lawton, OK 73501

135

	edoc_994381718.sf298.pdf
	Form SF298 Citation Data

